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Introduction D

e Optical Fibers have found a variety of applications.
2/40

e High-capacity fiber-Optic links installed around the world make the
magic of Internet and Telecommunications possible.

e Biomedical applications of fibers are increasing with the advent of
photonic crystal and other microstructured fibers.

e Fibers act as optical wires and transport light just as electrical wires
transport electricity.

e Nonlinear effects inside fibers provide a variety of new applications.

e This seminar provides a general overview of optical fibers with em-
phasis on their biomedical applications.

e Physical mechanism behind optical fibers: Total Internal Reflection

(TIR).
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Historical Evolution
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Daniel Colladon

Experimental Setup

John Tyndall

e TIR is attributed to John Tyndall (1854 experiment in London).
e The book City of Light by Jeff Hecht (1999) traces history of TIR.

e First demonstration in Geneva in 1841 by Daniel Colladon
(Comptes Rendus, vol. 15, pp. 800-802, Oct. 24, 1842).

e Light remained confined to a falling stream of water.
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Historical Details D

e Tyndall repeated the experiment in a 1854 lecture at the suggestion
of Faraday (but Faraday could not recall the original name). il
e Tyndall's name got attached to TIR because he described the ex-

periment in his popular book Light and Electricity (around 1860).

e Colladon published an article The Colladon Fountain in 1884 to
claim credit but it didn’t work (La Nature, Scientific American).

A fish tank and a laser pointer can be
used to demonstrate the phenomenon
of total internal reflection.
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Early TIR Applications
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e Luminous fountains used TIR during the “Exposition Universel” in
Paris in November 1889.

e Photograph from La Nature, published in 1889 (Fig. 3 on p. 593)
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Total Internal Reflection

e Refraction of light at a dielectric interface is governed by
Snell's law: n;sin 6; = n, sin 6, (around 1620).

e When n; > ny, light bends away from the normal (6; > 6;).
e At a critical angle 8; = 6., 6, becomes 90° (parallel to interface).

e Total internal reflection occurs for 6; > 0..

e g s | Lightsirking a
The ra) A i i
norrna\r incidence can be calculated .mEd'”m i allcvwer

to the  |from the Fresnel equations. index of refraction Light

suriace can be totally reflected. |incident

is not bent.
Normal
reflection
coefficient

r
Thaugh not
bent, part ny
of the: o
normal ray high index
is reflected. Critical Angle material
Bc
z + Light source




e UNIVERSITY of
oqulac-s ROCHESTER
Cladded Glass Fibers

e Unclad glass fibers (diameter <1 mm) were made during 1920s.
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e A fiber bundle for transmitting images patented by C. W. Hansell
and used by H. Lamm of Germany in 1930.

e Bare glass fibers suffered from several practical issues.

e Van Heel in Holland coated glass fibers with silver but no light
emerged from them (because of losses during multiple reflections).

e Brian O'Brien (Univ. of Rochester) suggested to van Heel the use
of dielectric cladding in October 1951.

e By April 1952, Van Heel transmitted images over 50 cm using a
bundle of 400 glass fibers with plastic cladding.
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Early Fiber Applications

e Hirschowitz wanted to use optical fibers for making a flexible
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gastroscope in 1954,
e Glass cladding was used in 1956 by L. Curtiss at Univ. of Michigan.
e He used a glass rod inside a glass tube of lower refractive index.
e Such a fiber was used to build a gastroscope in Feb. 1957.

e First commercial fiber gastroscope became available in 1960 and
soon after it was adopted by hospitals worldwide.

e Other early applications included cystocopes, image processing, and
toys. Losses limited fiber lengths to a few meters.

e Narinder Kapany popularized fiber optics with his 1960 Scientific
American article, followed with a book.
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Step-index fiber Graded-index fiber

Jacket

o

Radial distance Radial distance

e Contain a central core surrounded by a lower-index cladding
e Two-dimensional waveguides with cylindrical symmetry

e Graded-index fibers: Refractive index varies inside the core.
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Fiber Design
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e Core doped with GeO,; cladding with fluorine.

e Index profile rectangular for standard fibers.
e Triangular index profile for dispersion-shifted fibers.

e Raised or depressed cladding for dispersion control.
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Silica Fibers

Two-Stage Fabrication

&) ROCHESTER

e Preform: Length 1 m, diameter 2 cm; correct index profile.
e Preform is drawn into fiber using a draw tower.
Preform Fabrication Techniques
e Modified chemical vapor deposition (MCVD).
e Outside vapor deposition (OVD).
e Vapor Axial deposition (VAD).
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Fiber Draw Tower
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Fiber Properties

e Light guided over long lengths through total internal reflection.
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e Propagation within the fiber depends on the number of modes sup-
ported by that fiber.

e One must solve Maxwell's equations to find these spatial modes.
e Important fiber parameter: V = (27/A)ar/n? — n3.

e Each mode has an effective refractive index: n, < nn < ny.

e Only a single guided mode exists in fibers designed with V < 2.4,
e Typically a =5 um for A > 1.3 um for single-mode fibers.

e Nonlinear effects are enhanced in narrow-core fibers because of a
reduced effective mode area.
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Fiber Losses
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e Water peak near 1400 nm reduced considerably in modern fibers.

e Rayleigh scattering is the dominant loss mechanism (varies as A %)
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Fiber Dispersion

e Origin: Frequency dependence of the mode index 1(®):

B(o) =i(w)o/c= o+ Pi(®— w) +3B2(0 — wp)*+ -+,
where @y is the carrier frequency of optical pulse.
e Transit time for a fiber of length L: T =L/v,=L(dB/dw).

e Different frequency components travel at different speeds and arrive
at different times at output end (pulse broadening).
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Fiber Dispersion

e Pulse broadening governed by group-velocity dispersion:

L
AT = —Aw = — (—) = LB)Aw,

Vg

A is pulse bandwidth and L is fiber length.

e Second-order dispersion: f, = L (é) £ (ps®/km)

dw?

o Alternate definition: D = & (é) = —%ﬁz (ps/km/nm)

e Third-order Dispersion, governed by 35, becomes important for

femtosecond pulses. It is related to dispersion slope .
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Waveguide Dispersion
e Mode index (@) = ny (@) — dny ().
e Material dispersion Dy, results from n;(®) (index of silica).

e Waveguide dispersion Dy results from Ony (@) and depends on
core size and dopant distribution.

e Total dispersion D = Dy; + Dy can be controlled.
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Major Nonlinear Effects
e Self-Phase Modulation (SPM)
o Cross-Phase Modulation (XPM)
e Four-Wave Mixing (FWM)
e Stimulated Brillouin Scattering (SBS)

e Stimulated Raman Scattering (SRS)

Origin of Nonlinear Effects in Optical Fibers

e Third-order nonlinear susceptibility %

e Real part leads to SPM, XPM, and FWM.

e Imaginary part leads to SBS and SRS.
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Self-Phase Modulation (SPM)

e Refractive index depends on intensity as

n(l) =n+nyl(t).
o 1, =2.6 x 1072° m?/W for silica fibers.
e Propagation constant: B’ = B + koiia(P/Acr) = B + YP.
e Nonlinear parameter: ¥ =27, /(Acd ).

e Nonlinear Phase shift:
L
(PNL = / ’}/Poe_azdz = ’}/P()Leff, o= (1 — e_aL)/OC.
0

e Optical field modifies its own phase (SPM).

e SPM leads to spectral broadening of optical pulses.
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Nonlinear Schrodinger Equation

e Dispersive and Nonlinear effects are studied by solving a simple
equation derived from Maxwell’s equations.

e This equation is known as the Nonlinear Schrodinger Equation:

e Nonlinear parameter: Y= 27iiy /(Acd ).

e Fibers with large A.¢ are useful for telecommunications.
e Highly nonlinear fibers are made with reduced A

e Nonlinear effects are enhanced considerably in photonic crystal and
other microstructured fibers.
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e Refractive index seen by one wave depends on the intensity of other
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co-propagating waves.

e Nonlinear phase shifts for two waves take the form
Op = YoLett(Pa+2F,), Oy~ = YoLett (P +2F,).

e The second term with a factor of 2 is due to XPM.

e Mathematically, XPM effects are governed by two coupled NLS
equations.

e XPM is beneficial for applications such as optical switching, wave-
length conversion, etc.

e XPM is a limiting factor for modern telecommunication systems.
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Four-Wave Mixing
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e FWM converts two photons from one or two pump beams into two
new frequency-shifted photons.

e Energy conservation: i@, + 7@, = hos + haoy.
e Momentum conservation leads to phase-matching condition.

e Useful for parametric amplification and wavelength conversion.
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Brillouin Scattering

e Scattering of light from acoustic waves (electrostriction).

B ROCHESTER

e Energy and momentum conservation laws require

e Becomes a stimulated process at high input power levels.

e Most of power reflected once threshold is reached (<10 mW for
fiber lengths >10 km).

e Brillouin gain has a narrow Lorentzian spectrum (Av ~ 20 MHz).
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Stimulated Raman Scattering
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e Scattering of light from vibrating molecules.
e Scattered light shifted in frequency.
e Raman gain spectrum extends over 40 THz.

e Raman shift at Gain peak: Qg = ®, — @, ~ 13 THz).
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Microstructured Fibers
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e

(Eggleton et al, Opt. Exp.9, 698, 2001)
e A narrow core is surrounded by a silica cladding with air holes.

e Photonic crystal fibers have multiple rings of holes.

e Number of air holes varies from structure to structure.

e Hole size varies from 0.5 to 5 um depending on the design.

e Nonlinear effects are enhanced considerably (highly nonlinear fibers).

e Useful for supercontinuum generation among other things.
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Supercontinuum Generation
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(Ranka et al., Opt. Lett. 25, 25, 2000)

e Output spectrum generated in a 75-cm section of microstructured
fiber using 100-fs pules with 0.8 pJ energy.

e Supercontinuum extends from 400 to 1600 nm.
e |t is also relatively flat over the entire bandwidth.

e Useful in biomedical imaging as a broadband source.
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Dispersion-Tailored Fibers

=[s ; ——40m =
B Ny b 5m s 2
g f\}/\w"“‘“ S g 7/40
40 3 0 5
5 =
: =
— ] =
E -10 =
o 3
220 % -15 o
<@ o %‘D
o) h ]
S -20 =
[ 5
Q
£
-25
o .= : — -30 -
-100 -50 0 50 100 -100  -50 0 50 100
v - vg (THz) v - vy (THz}

(Barviau et al., Opt. Exp. 17, 7392, 2009)
e SC spectra as a function of fiber length and input peak power.

e A PCF with two zero-dispersion wavelengths was employed.

e Supercontinuum is relatively flat over the entire bandwidth.
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Tapered Photonic Crystal Fibers
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(Stark et al., Opt. Lett. 37, 770, 2012)
e Experimental (a) and simulated (b) SC spectra when 110-fs pulses

launched into a tapered PCF.

e (c) SC spectra at input pulse energies of 2 and 5 nJ.
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e Core diameter tapered form 4.5 um to 0.6 um over 1 cm.

e Tapering helps to extend the supercontinuum into the UV region.
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Supercontinuum-Based Biomedical Imaging
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e Several companies sell fiber-based supercontinuum sources (NKT
Photonics, Fianium, Koheras, Leukos, etc.|.

e This has led to their use in biomedical imaging.
e Imaging techniques are known by a variety of names.

e | focus on 3 techniques: CARS microscopy; STED microscopy; op-
tical coherence tomography.
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e Coherent anti-Stokes Raman scattering (CARS) is a well-known

nonlinear process (Maker and Terhune, Phys. Rev., 1965).

e Pump and Stokes beam at ), and ; drive coherently a vibrational
resonance at the frequency @i, = W, — @, (optical phonons).

o CARS signal generated at @Wcars = 20, — @;.

e CARS is a kind of Raman-enhanced four-wave mixing process.
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CARS Microscopy
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(Murugkar et al., Opt. Exp. 15, 14028, 2007)
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Laser pulses (65-fs) split to produce pump and Stokes beams.
Bandpass filter after the PCF selects the Stokes bandwidth.
Different Stokes frequencies excite different molecules in sample.
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CARS Microscopy
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(Murugkar et al., Opt. Exp. 15, 14028, 2007)
e Stokes pulses, broadened spectrally using a PCF, are sent to the
sample together with pump pulses.

e Anti-Stokes signal generated inside the sample is used for microscopy.

e (a) Live rat dorsal root axon; (b) lipid droplets in a cell culture;
(c) sebaceous gland in a mouse ear.

e Resolution is typically limited to 2-3 um.
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STED Microscopy

=0

3 f}, ~lns
Filarescenge
Abs orptior Stimulated Emission

- 5 T, lps
S 1 3

33,40

e Stimulated-emission depletion (STED) microscopy was first pro-
posed in 1994 (Hell and Wichmann, Opt. Lett. 19, 780, 1994).

e Fluorescence is suppressed in the off-center region using a second
beam that removes excited molecules through stimulated emission.

e Nanoscale resolution (A /50) realized by 2005 using a doughnut-
shape STED pulsed beam.

e A fiber-based supercontinuum source was used by 2008.
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STED Setup
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(Wildanger et al., Opt. Exp. 16, 9614, 2008)
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ATTO 590 - Exc @ 570nm / STED @ 700nm

ATTO 633 - Exc @ 630nm / STED @ 745nm

(Wildanger et al., Opt. Exp. 16, 9614, 2008)
Immunolabeled tubulin fibers imaged at 570 nm and 630 nm.
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Optical Coherence Tomography (OCT)
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(Drexler et al., Opt. Lett. 24, 1221, 1999)
e A linear imaging technique based on Michelson interferometry.
e Image resolution (Az = c¢t,) depends on the coherence time 7.

e Supercontinuum sources provide a resolution of < 1 um.
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Dual-Band OCT
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(Fujimoto et al., Opt. Exp. 14, 1145, 2006)

e OCT is performed simultaneously using two spectral bands located

near 800 and 1300 nm.

e Image resolution < 3 um at 800 and <5 um at 1300 nm.

e Combined in vivo images of good quality possible.
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Dual-Band OCT
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(Cimalla et al., Opt. Exp. 17, 19486, 2009)
e Simultaneous in vivo scans of murine saphenous artery (A),
vein (V) and perivascular fat tissue (FT) during the diastole.

e (a) Image at 800 nm; (b) same image at 1250 nm.
e (c) Compounded image of (a) and (b).

e (d) Color-encoded differential image.
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High-Resolution OCT
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(Nishiura et al., Jap. J. Appl. Phys. 49, 012701, 2010)
e OCT in vivo image of human retina around fovea.

e Observed axial resolution was 2.1 m in tissue.

e A Gaussian-shape 150-nm-wide supercontinuum was employed for
this image.

e OCT is an established medical imaging technique. It is often used
to image anterior segment of the eye or the retina.
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Concluding Remarks

e Optical fibers were developed during the 1950s and used for biomed-
ical applications during the 1960s.
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e They became relevant for telecommunications after 1970 with the
development of low-loss fibers.

e By 2000, more than 60 million kilometers of fiber was installed
worldwide (on land and in the oceans).

e Biomedical applications of optical fibers are attracting attention in
recent years.

e Nonlinear effects in optical fibers make it possible to create a
supercontinnum whose bandwidth exceeds 100 THz.

e Such sources are useful for tissue tomography and nonlinear
microscopy (biomedical imaging).
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