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Introduction
• Nonlinear optical effects have been studied since 1962 and have

found applications in many branches of optics.

• Nonlinear interaction length is limited in bulk materials because of

tight focusing and diffraction of optical beams:

Ldiff = kw2
0, (k = 2π/λ ).

• Much longer interaction lengths become feasible in optical wave-

guides, which confine light through total internal reflection.

• Optical fibers allow interaction lengths > 1 km.
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Advantage of Waveguides
• Efficiency of a nonlinear process in bulk media is governed by

(I0Lint)bulk =

(
P0

πw2
0

)
πw2

0

λ
=

P0

λ
.

• In a waveguide, spot size w0 can be determined across its length L.

• In this case, Lint is limited by the loss α .

• Using I(z) = I0 e−αz, we obtain

(I0Lint)wg =
∫ L

0
I0e−αz dz≈ P0

πw2
0α

.

• Nonlinear efficiency in a waveguide can be improved by

(I0Lint)wg

(I0Lint)bulk
=

λ
πw2

0α
∼ 106.
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Planar and Cylindrical Waveguides

• Dielectric waveguides employ total internal reflection to confine light

to a central region.

• The refractive index is larger inside this central region.

• Two main classes: Planar and cylindrical waveguides.

• In the planar case, a ridge structure used for 2-D confinement.

• Optical fibers dope silica glass with germanium to realize a central

core with slightly higher refractive index.
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Light Propagation in Waveguides
• Optical pulses launched into optical waveguides are affected by (i)

loss, (ii) dispersion, and (iii) Kerr nonlinearity.

• Losses are negligible in optical fibers (< 0.5 dB/km) and manage-

able (< 1 dB/cm) in planar waveguides.

• Dispersion can be normal or anomalous but can be tailored through

waveguide design.

• The combination of dispersion and nonlinearity leads to a variety of

nonlinear phenomena with useful applications.

• We focus on single-mode fibers first because their low losses allow

long interaction lengths.

• Planar silicon waveguides will be covered in a separate lecture.
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Chromatic Dispersion
• Frequency dependence of the propagation constant included using

β (ω) = n̄(ω)ω/c = β0+β1(ω−ω0)+β2(ω−ω0)
2+ · · · ,

where ω0 is the carrier frequency of optical pulse.

• Group velocity is related to β1 = (dβ/dω)ω=ω0 as vg = 1/β1.

• Different frequency components of a pulse travel at different speeds

and result in pulse broadening governed by β2 = (d2β/dω2)ω=ω0.
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Waveguide Dispersion
• Mode index n̄(ω) = n1(ω)−δnW(ω).

• Material dispersion included through n1(ω) of the core.

• Waveguide dispersion results from δnW(ω) and depends on the

waveguide design and dimensions.

• Total dispersion β2 = β2M + β2W can be controlled by changing

design of a waveguide.

• β2 vanishes at a specific wavelength known as the zero-dispersion

wavelength (ZDWL).

• This wavelength separates the normal (β2 > 0) and anomalous

(β2 < 0) dispersion regions of a waveguide.

• Some fibers exhibit multiple zero-dispersion wavelengths.
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Major Nonlinear Effects
• Self-Phase Modulation (SPM)

• Cross-Phase Modulation (XPM)

• Four-Wave Mixing (FWM)

• Stimulated Brillouin Scattering (SBS)

• Stimulated Raman Scattering (SRS)

Origin of Nonlinear Effects

• Third-order nonlinear susceptibility χ (3).

• Real part leads to SPM, XPM, and FWM.

• Imaginary part leads to two-photon absorption (TPA).
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Third-order Nonlinear Susceptibility
• The tensorial nature of χ (3) makes theory quite complicated.

• It can be simplified considerably when a single optical beam excites

the fundamental mode of an optical waveguide.

• Only the component χ (3)
1111(−ω;ω,−ω,ω) is relevant in this case.

• Its real and imaginary parts provide the Kerr coefficient n2 and the

TPA coefficient βT as

n2(ω)+
ic

2ω
βTPA(ω) =

3
4ε0cn2

0
χ (3)

1111(−ω;ω,−ω,ω).

• A 2007 review on silicon waveguides provides more details:

Q. Lin, O. Painter, G. P. Agrawal, Opt. Express 15, 16604 (2007).
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Nonlinear Parameters
• Refractive index depends on intensity as (Kerr effect):

n(ω, I) = n̄(ω)+n2(1+ ir)I(t).

• Material parameter n2 = 3×10−18 m2/W is larger for silicon by a

factor of 100 compared with silica fibers.

• Dimensionless parameter r = βTPA/(2k0n2) is related to two-photon

absorption (TPA).

• For silicon βTPA = 5×10−12 m/W at wavelengths near 1550 nm.

• Dimensionless parameter r ≈ 0.1 for silicon near 1550 nm.

• Negligible TPA occurs in silica glasses (r ≈ 0).
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Self-Phase Modulation
• In silica fibers, refractive index depends on intensity as

n(ω, I) = n̄(ω)+n2I(t).

• Frequency dependence of n̄ leads to dispersion.

• Using φ = (2π/λ )nL, I dependence of n leads to nonlinear phase

shift

φNL(t) = (2π/λ )n2I(t)L.

• Clearly, the optical field modifies its own phase (hence, SPM).

• For pulses, phase shift varies with time (leads to chirping).

• As the pulse propagates down the fiber, its spectrum changes

because of SPM induced by the Kerr effect.
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Nonlinear Phase Shift
• Pulse propagation governed by the Nonlinear Schrödinger Equation

i
∂A
∂ z
− β2

2
∂ 2A
∂ t2 + γ|A|2A = 0.

• Dispersive effects within the fiber included through β2.

• Nonlinear effects included through γ = 2πn2/(λAeff).

• If we ignore dispersive effects, solution can be written as

A(L, t) = A(0, t)exp(iφNL), where φNL(t) = γL|A(0, t)|2.

• Nonlinear phase shift depends on input pulse shape.

• Maximum Phase shift: φmax = γP0L = L/LNL.

• Nonlinear length: LNL = (γP0)
−1 ∼ 1 km for P0 ∼ 1 W.
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SPM-Induced Chirp
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• Super-Gaussian pulses: P(t) = P0 exp[−(t/T )2m].

• Gaussian pulses correspond to the choice m = 1.

• Chirp is related to the phase derivative dφ/dt.

• SPM creates new frequencies and leads to spectral broadening.
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SPM-Induced Spectral Broadening

• First observed in 1978 by

Stolen and Lin.

• 90-ps pulses transmitted

through a 100-m-long fiber.

• Spectra are labelled using

φmax = γP0L.

• Number M of spectral

peaks: φmax = (M− 1
2)π .

• Output spectrum depends on shape and chirp of input pulses.

• Even spectral compression can occur for suitably chirped pulses.
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SPM-Induced Spectral Narrowing
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• Chirped Gaussian pulses with A(0, t) = A0 exp[−1
2(1+ iC)(t/T0)

2].

• If C < 0 initially, SPM produces spectral narrowing.
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SPM: Good or Bad?
• SPM-induced spectral broadening can degrade performance of a

lightwave system.

• Modulation instability often enhances system noise.

On the positive side . . .

• Modulation instability can be used to produce ultrashort pulses at

high repetition rates.

• SPM often used for fast optical switching (NOLM or MZI).

• Formation of standard and dispersion-managed optical solitons.

• Useful for all-optical regeneration of WDM channels.

• Other applications (pulse compression, chirped-pulse amplification,

passive mode-locking, etc.)
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Modulation Instability
Nonlinear Schrödinger Equation

i
∂A
∂ z
− β2

2
∂ 2A
∂ t2 + γ|A|2A = 0.

• CW solution unstable for anomalous dispersion (β2 < 0).

• Useful for producing ultrashort pulse trains at tunable repetition

rates [Tai et al., PRL 56, 135 (1986); APL 49, 236 (1986)].
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Modulation Instability (cont.)
• A CW beam can be converted into a pulse train.

• Two CW beams at slightly different wavelengths can initiate

modulation instability and allow tuning of pulse repetition rate.

• Repetition rate is governed by their wavelength difference.

• Repetition rates ∼100 GHz realized by 1993 using DFB lasers

(Chernikov et al., APL 63, 293, 1993).
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Optical Solitons
• Combination of SPM and anomalous GVD produces solitons.

• Solitons preserve their shape in spite of the dispersive and

nonlinear effects occurring inside fibers.

• Useful for optical communications systems.

• Dispersive and nonlinear effects balanced when LNL = LD.

• Nonlinear length LNL = 1/(γP0); Dispersion length LD = T 2
0 /|β2|.

• Two lengths become equal if peak power and width of a pulse satisfy

P0T 2
0 = |β2|/γ .
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Fundamental and Higher-Order Solitons
• NLS equation: i∂A

∂ z −
β2
2

∂ 2A
∂ t2 + γ|A|2A = 0.

• Solution depends on a single parameter: N2 =
γP0T 2

0
|β2|

.

• Fundamental (N = 1) solitons preserve shape:

A(z, t) =
√

P0 sech(t/T0)exp(iz/2LD).

• Higher-order solitons evolve in a periodic fashion.
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Stability of Optical Solitons
• Solitons are remarkably stable.

• Fundamental solitons can be excited with any pulse shape.

Gaussian pulse with N = 1.

Pulse eventually acquires

a ‘sech’ shape.

• Can be interpreted as temporal modes of a SPM-induced waveguide.

• ∆n = n2I(t) larger near the pulse center.

• Some pulse energy is lost through dispersive waves.



23/50

JJ
II
J
I

Back

Close

Cross-Phase Modulation
• Consider two optical fields propagating simultaneously.

• Nonlinear refractive index seen by one wave depends on the

intensity of the other wave as

∆nNL = n2(|A1|2+b|A2|2).

• Total nonlinear phase shift:

φNL = (2πL/λ )n2[I1(t)+bI2(t)].

• An optical beam modifies not only its own phase but also of other

copropagating beams (XPM).

• XPM induces nonlinear coupling among overlapping optical pulses.
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XPM: Good or Bad?
• XPM leads to interchannel crosstalk in WDM systems.

• It can produce amplitude and timing jitter.

On the other hand . . .

XPM can be used beneficially for

• Nonlinear Pulse Compression

• Passive mode locking

• Ultrafast optical switching

• Demultiplexing of OTDM channels

• Wavelength conversion of WDM channels
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XPM-Induced Crosstalk

• A CW probe propagated with 10-Gb/s pump channel.

• Probe phase modulated through XPM.

• Dispersion converts phase modulation into amplitude modulation.

• Probe power after 130 (middle) and 320 km (top) exhibits large

fluctuations (Hui et al., JLT, 1999).
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XPM-Induced Pulse Compression

• An intense pump pulse is copropagated with the low-energy pulse

requiring compression.

• Pump produces XPM-induced chirp on the weak pulse.

• Fiber dispersion compresses the pulse.
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XPM-Induced Mode Locking

• Different nonlinear phase shifts for the two polarization components:

nonlinear polarization rotation.

φx−φy = (2πL/λ )n2[(Ix +bIy)− (Iy+bIx)].

• Pulse center and wings develop different polarizations.

• Polarizing isolator clips the wings and shortens the pulse.

• Can produce ∼100 fs pulses.
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Synchronous Mode Locking

• Laser cavity contains the XPM fiber (few km long).

• Pump pulses produce XPM-induced chirp periodically.

• Pulse repetition rate set to a multiple of cavity mode spacing.

• Situation equivalent to the FM mode-locking technique.

• 2-ps pulses generated for 100-ps pump pulses (Noske et al.,

Electron. Lett, 1993).



29/50

JJ
II
J
I

Back

Close

Four-Wave Mixing (FWM)

• FWM is a nonlinear process that transfers energy from pumps

to signal and idler waves.

• FWM requires conservation of (notation: E = Re[Aei(β z−ωt)])

? Energy ω1+ω2 = ω3+ω4

? Momentum β1+β2 = β3+β4

• Degenerate FWM: Single pump (ω1 = ω2).
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Theory of Four-Wave Mixing
• Third-order polarization: PNL = ε0χ (3)...EEE (Kerr nonlinearity).

E =
1
2

x̂
4

∑
j=1

Fj(x,y)A j(z, t)exp[i(β jz−ω jt)]+ c.c.

• The four slowly varying amplitudes satisfy

dA1

dz
=

in2ω1

c

[(
f11|A1|2+2 ∑

k 6=1
f1k|Ak|2

)
A1+2 f1234A∗2A3A4ei∆kz

]
dA2

dz
=

in2ω2

c

[(
f22|A2|2+2 ∑

k 6=2
f2k|Ak|2

)
A2+2 f2134A∗1A3A4ei∆kz

]
dA3

dz
=

in2ω3

c

[(
f33|A3|2+2 ∑

k 6=3
f3k|Ak|2

)
A3+2 f3412A1A2A∗4e−i∆kz

]
dA4

dz
=

in2ω4

c

[(
f44|A4|2+2 ∑

k 6=4
f4k|Ak|2

)
A4+2 f4312A1A2A∗3e−i∆kz

]
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Simplified FWM Theory
• Full problem quite complicated (4 coupled nonlinear equations)

• Overlap integrals fi jkl ≈ fi j ≈ 1/Aeff in single-mode fibers.

• Linear phase mismatch: ∆k = β (ω3)+β (ω4)−β (ω1)−β (ω2).

• Undepleted-pump approximation simplifies the problem.

• Using A j = B j exp[2iγ(P1+P2)z], the signal and idler satisfy

dB3

dz
= 2iγ

√
P1 P2B∗4e−iκz,

dB4

dz
= 2iγ

√
P1 P2B∗3e−iκz.

• Signal power P3 and Idler power P4 are much smaller than

pump powers P1 and P2 (Pn = |An|2 = |Bn|2).

• Total phase mismatch: κ = β3+β4−β1−β2+ γ(P1+P2).

• Nonlinear parameter: γ = n2ω0/(cAeff)∼ 10 W−1/km.
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General Solution
• Signal and idler fields satisfy coupled linear equations

dB3

dz
= 2iγ

√
P1 P2B∗4e−iκz,

dB∗4
dz

=−2iγ
√

P1 P2B3eiκz.

• General solution when both the signal and idler are present at z= 0:

B3(z) = {B3(0)[cosh(gz) + (iκ/2g)sinh(gz)]
+ (iγ/g)

√
P1P2B∗4(0)sinh(gz)}e−iκz/2

B∗4(z) = {B∗4(0)[cosh(gz) − (iκ/2g)sinh(gz)]
− (iγ/g)

√
P1P2B3(0)sinh(gz)}eiκz/2

• If an idler is not launched at z = 0 (phase-insensitive amplification):

B3(z) = B3(0)[cosh(gz)+(iκ/2g)sinh(gz)]e−iκz/2

B∗4(z) = B3(0)(−iγ/g)
√

P1P2 sinh(gz)eiκz/2
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Gain Spectrum
• Signal amplification factor for a FOPA:

G(ω) =
P3(L,ω)

P3(0,ω)
=

[
1+
(

1+
κ2(ω)

4g2(ω)

)
sinh2[g(ω)L]

]
.

• Parametric gain: g(ω) =
√

4γ2P1P2−κ2(ω)/4.

• Wavelength conversion efficiency:

ηc(ω) =
P4(L,ω)

P3(0,ω)
=

(
1+

κ2(ω)

4g2(ω)

)
sinh2[g(ω)L].

• Best performance for perfect phase matching (κ = 0):

G(ω) = cosh2[g(ω)L], ηc(ω) = sinh2[g(ω)L].
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Parametric Gain and Phase Matching

In the case of a single pump:

g(ω) =
√

(γP0)2−κ2(ω)/4.

Phase mismatch κ = ∆k+2γP0

Parametric gain maximum

when ∆k =−2γP0.

• Linear mismatch: ∆k = β2Ω2+β4Ω4/12+ · · ·, where Ω=ωs−ωp.

• Phase matching realized by detuning pump wavelength

from fiber’s ZDWL slightly such that β2 < 0.

• In this case Ω = ωs−ωp = (2γP0/|β2|)1/2.
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Highly Nondegenerate FWM
• Some fibers can be designed such that β4 < 0.

• If β4 < 0, phase matching is possible for β2 > 0.

• Ω can be very large in this case.
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FWM: Good or Bad?
• FWM leads to interchannel crosstalk in WDM systems.

• It generates additional noise and degrades system performance.

On the other hand . . .

FWM can be used beneficially for

• Optical amplification and wavelength conversion

• Phase conjugation and dispersion compensation

• Ultrafast optical switching and signal processing

• Generation of correlated photon pairs
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Parametric Amplification
• FWM can be used to amplify a weak signal.

• Pump power is transferred to signal through FWM.

• Peak gain Gp =
1
4 exp(2γP0L) can exceed 20 dB for

P0 ∼ 0.5 W and L∼ 1 km.

• Parametric amplifiers can provide gain at any wavelength using

suitable pumps.

• Two pumps can be used to obtain 30–40 dB gain over

a large bandwidth (>40 nm).

• Such amplifiers are also useful for ultrafast signal processing.

• They can be used for all-optical regeneration of bit streams.
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Single- and Dual-Pump FOPAs
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Four-Wave Mixing (FWM)

Pump

IdlerSignal

 λ3 λ1 λ4

• Pump wavelength close

to fiber’s zero-dispersion

wavelength

• Nonuniform gain spectrum

with a central dip.
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Four-Wave Mixing (FWM)

IdlerSignal

Pump 2Pump 1

 λ1 λ3 λ0 λ4 λ2

• Widely separated pumps

• Pumps orthogonally polarized

• Polarization insensitive gain

over a large bandwidth
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Optical Phase Conjugation
• FWM generates an idler wave during parametric amplification.

• Its phase is complex conjugate of the signal field (A4 ∝ A∗3) because

of spectral inversion.

• Phase conjugation can be used for dispersion compensation by plac-

ing a parametric amplifier midway.

• It can also reduce timing jitter in lightwave systems.
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Stimulated Raman Scattering
• Scattering of light from vibrating silica molecules.

• Amorphous nature of silica turns vibrational state into a band.

• Raman gain spectrum extends over 40 THz or so.

• Raman gain is maximum near 13 THz.

• Scattered light red-shifted by 100 nm in the 1.5 µm region.
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Raman Threshold
• Raman threshold is defined as the input pump power at which Stoke

power becomes equal to the pump power at the fiber output:

Ps(L) = Pp(L)≡ P0 exp(−αpL).

• Using Peff
s0 = (h̄ωs)Beff, the Raman threshold condition becomes

Peff
s0 exp(gRP0Leff/Aeff) = P0,

• Assuming a Lorentzian shape for the Raman-gain spectrum, Raman

threshold is reached when (Smith, Appl. Opt. 11, 2489, 1972)

gRPthLeff

Aeff
≈ 16 =⇒ Pth ≈

16Aeff

gRLeff
.



42/50

JJ
II
J
I

Back

Close

Estimates of Raman Threshold
Telecommunication Fibers

• For long fibers, Leff = [1− exp(−αL)]/α ≈ 1/α ≈ 20 km

for α = 0.2 dB/km at 1.55 µm.

• For telecom fibers, Aeff = 50–75 µm2.

• Threshold power Pth ∼1 W is too large to be of concern.

• Interchannel crosstalk in WDM systems because of Raman gain.

Yb-doped Fiber Lasers and Amplifiers

• Because of gain, Leff = [exp(gL)−1]/g > L.

• For fibers with a large core, Aeff ∼ 1000 µm2.

• Pth exceeds 10 kW for short fibers (L < 10 m).

• SRS may limit fiber lasers and amplifiers if L� 10 m.
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SRS: Good or Bad?
• Raman gain introduces interchannel crosstalk in WDM systems.

• Crosstalk can be reduced by lowering channel powers but it limits

the number of channels.

On the other hand . . .

• Raman amplifiers are a boon for WDM systems.

• Can be used in the entire 1300–1650 nm range.

• EDFA bandwidth limited to ∼40 nm near 1550 nm.

• Distributed nature of Raman amplification lowers noise.

• Needed for opening new transmission bands in telecom systems.
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Stimulated Brillouin Scattering
• Originates from scattering of light from acoustic waves.

• Becomes a stimulated process when input power exceeds a

threshold level.

• Threshold power relatively low for long fibers (∼5 mW).

Transmitted

Reflected

• Most of the power reflected backward after SBS threshold is reached.
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Brillouin Shift
• Pump produces density variations through electrostriction.

• Resulting index grating generates Stokes wave through Bragg diffrac-

tion.

• Energy and momentum conservations require:

ΩB = ωp−ωs, ~kA =~kp−~ks.

• Acoustic waves satisfy the dispersion relation:

ΩB = vA|~kA| ≈ 2vA|~kp|sin(θ/2).

• In a single-mode fiber θ = 180◦, resulting in

νB = ΩB/2π = 2npvA/λp ≈ 11 GHz,

if we use vA = 5.96 km/s, np = 1.45, and λp = 1.55 µm.
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Brillouin Gain Spectrum

• Measured spectra for (a) silica-core (b) depressed-cladding, and

(c) dispersion-shifted fibers.

• Brillouin gain spectrum is quite narrow (∼50 MHz).

• Brillouin shift depends on GeO2 doping within the core.

• Multiple peaks are due to the excitation of different acoustic modes.

• Each acoustic mode propagates at a different velocity vA and thus

leads to a different Brillouin shift (νB = 2npvA/λp).
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Brillouin Threshold
• Pump and Stokes evolve along the fiber as

−dIs

dz
= gBIpIs−αIs,

dIp

dz
=−gBIpIs−αIp.

• Ignoring pump depletion, Ip(z) = I0 exp(−αz).

• Solution of the Stokes equation:

Is(L) = Is(0)exp(gBI0Leff−αL).

• Brillouin threshold is obtained from

gBPthLeff

Aeff
≈ 21 =⇒ Pth ≈

21Aeff

gBLeff
.

• Brillouin gain gB ≈ 5× 10−11 m/W is nearly independent of the

pump wavelength.
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Estimates of Brillouin Threshold
Telecommunication Fibers

• For long fibers, Leff = [1− exp(−αL)]/α ≈ 1/α ≈ 20 km for

α = 0.2 dB/km at 1.55 µm.

• For telecom fibers, Aeff = 50–75 µm2.

• Threshold power Pth ∼1 mW is relatively small.

Yb-doped Fiber Lasers and Amplifiers

• Pth exceeds 20 W for a 1-m-long standard fibers.

• Further increase occurs for large-core fibers; Pth ∼ 400 W when

Aeff ∼ 1000 µm2.

• SBS is the dominant limiting factor at power levels P0 > 0.5 kW.



49/50

JJ
II
J
I

Back

Close

Techniques for Controlling SBS
• Pump-Phase modulation: Sinusoidal modulation at several frequen-

cies >0.1 GHz or with a pseudorandom bit pattern.

• Cross-phase modulation by launching a pseudorandom pulse train

at a different wavelength.

• Temperature gradient along the fiber: Changes in νB = 2npvA/λp

through temperature dependence of np.

• Built-in strain along the fiber: Changes in νB through np.

• Nonuniform core radius and dopant density: mode index np also

depends on fiber design parameters (a and ∆).

• Control of overlap between the optical and acoustic modes.

• Use of Large-core fibers: A wider core reduces SBS threshold by

enhancing Aeff.
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Concluding Remarks
• Optical waveguides allow nonlinear interaction over long lengths.

• Optical fibers exhibit a variety of nonlinear effects.

• Fiber nonlinearities are feared by telecom system designers because

they affect system performance adversely.

• Nonlinear effects are useful for many applications.

• Examples include: ultrafast switching, wavelength conversion, broad-

band amplification, pulse generation and compression.

• New kinds of fibers have been developed for enhancing nonlinear

effects (photonic crystal and other microstructured fibers).

• Nonlinear effects in such fibers are finding new applications in fields

such as optical metrology and biomedical imaging.


	Outline
	Introduction
	Advantage of Waveguides
	Planar and Cylindrical Waveguides
	Light Propagation in Waveguides
	Chromatic Dispersion
	Waveguide Dispersion
	Major Nonlinear Effects
	Third-order Nonlinear Susceptibility
	Nonlinear Parameters
	Self-Phase Modulation
	Nonlinear Phase Shift
	SPM-Induced Chirp
	SPM-Induced Spectral Broadening
	SPM-Induced Spectral Narrowing
	SPM:  Good or Bad?
	Modulation Instability
	Modulation Instability (cont.)
	Optical Solitons
	Fundamental and Higher-Order Solitons
	Stability of Optical Solitons
	Cross-Phase Modulation
	XPM:  Good or Bad?
	XPM-Induced Crosstalk
	XPM-Induced Pulse Compression
	XPM-Induced Mode Locking
	Synchronous Mode Locking
	Four-Wave Mixing (FWM)
	Theory of Four-Wave Mixing
	Simplified FWM Theory
	General Solution
	Gain Spectrum
	Parametric Gain and Phase Matching
	Highly Nondegenerate FWM
	FWM:  Good or Bad?
	Parametric Amplification
	Single- and Dual-Pump FOPAs
	Optical Phase Conjugation
	Stimulated Raman Scattering
	Raman Threshold
	Estimates of Raman Threshold
	SRS:  Good or Bad?
	Stimulated Brillouin Scattering
	Brillouin Shift
	Brillouin Gain Spectrum
	Brillouin Threshold
	Estimates of Brillouin Threshold
	Techniques for Controlling SBS
	Concluding Remarks

