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Silicon Photonics

e Silicon dominates microelectronics industry totally.

e Silicon photonics is a new research area trying to capitalize on the
huge investment by the microelectronics industry.

e |t has the potential for providing a monolithically integrated
optoelectronic platform on a silicon chip.
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Credit: Intel and IBM Websites
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Silicon Photonics
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e Intel introduced 50-Gb/s silicon-photonics links in 2010.

e Transmitter chip contains four hybrid silicon lasers and four optical
modulators, each encoding data at 12.5 Gb/s.

e Four data streams are combined and fed into a single optical fiber.

e Receiver chip separates four WDM channels and directs them into
separate photodetectors.
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e Optical processing on a silicon chip requires photonic wires.
e They confine light just as electric wires confine electrons.

e Best solution: A silicon-on-insulator (SOI) waveguide in which a
narrow silicon layer is surrounded by lower-index cladding layers.

e In a SOl waveguide, the thin silicon layer has a silica-glass layer at
bottom and air or a polymer on top.

e Since a silicon substrate is used, it is not obvious how to crate a
silica layer just below the silicon surface.

e Silicon-on-Insulator Technology was developed to meet this need
and its development has led to the new research area of silicon
photonics.
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Silicon-on-Insulator Technology
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e Silica layer formed by implanting oxygen, followed with annealing.

e A rib or ridge structure used to confine light tightly within an
effective mode area of < 0.5 um?.

e Nonlinear effects enhanced considerably at moderate power levels.

e Future circuits will need nonlinear effects for signal processing.
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Nonlinear Effects and their Applications
e Self-Phase Modulation (SPM)

Soliton-like pulse evolution, supercontinuum generation,
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all-optical regeneration of telecom channels

e Cross-Phase Modulation (XPM)
Photonic switching, wavelength conversion, optical signal process-
ing, polarization changes through TE-TM mode coupling

e Four-Wave Mixing (FWM)
Parametric amplification, wavelength conversion,
phase conjugation, tunable parametric delays

e Stimulated Raman Scattering (SRS)
Raman amplification at any wavelength,
optically pumped Raman lasers
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Kerr Effect and Two-Photon Absorption

e Refractive index depends on local intensity (Kerr effect):

n(w,l) =n(w)+ny(1+ir)l(t).
e Material parameter n, = 3 x 10~'® m? /W is larger for silicon by a
factor of 100 compared with silica fibers.

e Dimensionless parameter r = Brpa /(2kon, ) is related to two-photon
absorption (TPA) occurring when AV exceeds E, /2.

e TPA parameter: Brpy =5 x 1072 m /W at wavelengths near 1550 nm.
e Dimensionless parameter r =~ 0.1 for silicon near 1550 nm.

e TPA is a major limiting factor for SOl waveguides because it creates
free carriers (in addition to nonlinear losses).




The Institute of _
OPTICS

Free-Carrier Generation
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e TPA creates free carriers inside a silicon waveguide according to

a]Vc BTPA 2
Rl A
3t 2hve (2,1) T

e Carrier lifetime is relatively large for silicon (7. > 10 ns).

e |t limits the device response time if carriers cannot be removed
quickly enough.

e Free carriers also introduce loss and change the refractive index.

e Pulse propagation inside silicon waveguides is governed by

5’A+iﬁ282A
aich SR
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= ikoma (1 +ir)|AJPA — %(1 +iHNA = A,
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Free-Carrier Absorption (FCA)

e Loss induced by FCA: oty = oN, with 0 = 1.45 X 1072 m?.
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e Free carriers also change the refractive index by An = — (1 /2k) OGN,
(free-carrier dispersion).

e This change is opposite to the index change n,I resulting from the
Kerr effect.

e Parameter U is known as the “linewidth enhancement factor” in the
context of semiconductor lasers.

e |ts value for silicon is close to 7.5 in the spectral region near 1550 nm.

e Absorption and index changes resulting from free carriers affect the
performance of silicon waveguides.

e Quick removal of carriers helps (e.g., by applying a dc electric field).
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Removal of Free Carriers
1.5 um
) ‘A ............... » A V>O
_I_ 1.55 um 0.7 um I
A 4
p+ 6.um »
A 4

Buried oxide

Si substrate

Jones et al, Opt. Exp. 13, 519 (2005)

e A reversed-biased p-n junction is used for this purpose.
e Electric field across the waveguide removes electrons and holes.
e Drift time becomes shorter for larger applied voltages.

e Effective carrier lifetime can be shortened from >20 to <1 ns.
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Self-Phase Modulation (SPM)

e Refractive index depends on intensity as n' = 1+ nyI(t).

e Propagation constant also becomes intensity-dependent:
B'= B +konao(P/Aett) = B + YP.

o v = kon, /A is larger for silicon nanowires by a factor of >10,000
compared with silica fibers.

e Nonlinear Phase shift:

i L
ONL :/0 (ﬁ/_ﬁ)dZ:/O YP(2) dz = YPuLess-
Here, P(z) = Pne™ % and Legr = (1 —e L)/ ax.
e Optical field modifies its own phase (SPM).

e Phase shift varies with time for pulses (chirping).
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Chirping and Spectral Broadening

Chirp, 60)T0

Time, TFI'0 Time, T/T0

e In the case of optical pulses, Oni(2) = YP(t)Les-
e Chirp is related to the phase derivative d¢n /dt.

e Phase and chirp profiles for super-Gaussian pulses are shown
using P(t) = Pyexp[—(¢/T)*"] with m =1 and m = 3.

e SPM creates new frequencies and leads to spectral broadening.




UNIVERSITY of

The Institute of _ mmnm ROCHESTER

OPTICS
Self-Phase Modulation and TPA

e Preceding analysis neglected two-photon absorption.

e |Its impact on SPM can be studied by solving:
dA
dz

e This equation ignores dispersive and free-carrier effects.

(04
— iy(1 +ir)\A]2A—?lA.

e Using A = /Pexp(ignL ), we obtain the following analytic solution:

P e P(0,t)exp(—oyL)
" 14 2ryP(0,¢)Leg

1
¢NL(L,t) == Zln[l —|—2r’}’P(0,l)Leff].

e TPA converts linear dependence of ¢ni. on power to a logarithmic
one.
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Impact of Two-Photon Absorption
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Yin, Agrawal, Opt. Lett. 32, 2031 (2007

e TPA-induced reduction becomes severe at high powers.

e When ¢p.x = 100, @ is limited to a value of 15.
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Impact of Free-Carrier Generation

o, .= 15m 1= 1.2 GW/em® o, =7.5m,|,= 6.0 GW/em®
E TPA=0 - - 5
“Z 0.015 HE E;TP A ] 0025
3 - & only 0.02 2 /2
£ i —t=/T
2 001 Ny ( ) =
= AN L—Full | 0015 P(t Foe
c B e :
[} N -
= 0.005 001 Iy =10 ps
5 . 0.005 - L=2cm
) ol ., 0 : .
1549 1.5495 1,55 1.5505 1.551 1548 155 1552 —
A (um) A (um) Te 1 ns
— — 2
O™ 15:5m, 1= 12.5 GW/cm 0, .= 155m, 1= 12.5 GWiem? 061 g 1 dB / cm

. 4
€ N \
£0.015 /1 ,\f\"* TPA 3
o / _' B .
5 |t it TreRcAl £z Yin and Agrawal,
2 ootfonly 5 P! e 1
> -y £
3 Nubod v |5 Opt. Lett. 32,
) AR IENR @
° AN g -1
EOOOS II 1 !11 n \ FU” -EE 5 2031 (2007)
o g v
3 / ! ! /\\\ -3
(9] 0 < <

1548 1549 155 1551 1552 -5-4-3-2-1 0 1 2 3 4 5
A (um) tT,

Free carriers produce a nonlinear phase shift in the opposite direction.
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Experimental Results
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Boyraz et al., Opt. Exp. 12, 829 (2004).
e First observation of SPM-induced spectral broadening in 2004.

e 4-ps pulses launched inside a 2-cm-long SOl waveguide.

e The 3-peak output spectrum broadened by a factor of 2 when peak
intensity was 2.2 GW/cm? (Py ~ 100 W).
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Experimental Results
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e Larger broadening by 2006. | 1g/s6

e 1.8-ps pulses launched
inside a 4-mm-long
waveguide.

e Width 470 nm
height 226 nm.

e Spectral asymmetry is due
to free-carrier effects.

e |nset shows the FROG
trace.
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Formation of Optical Solitons

e Solitons balance SPM with dispersion and maintain their shape.

e Nonlinear length Ly = 1/(YPy) ~1 mm at peak powers <100 W.
e Dispersion length, Lp = T2 /|B2, can be ~1 mm for fsec pulses.

e Pulses propagate as fundamental solitons when 3, < 0 and

Epii YPo T .

N? = L L ¥
Lo |

e Perfect solitons do not exist because of TPA and other losses.
e Soliton-like propagation still possible with proper design.

e Numerical simulations and experiments confirm this expectation.

Zhang et al. Opt. Express 15, 7682 (2007).
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Numerical Results
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Yin, Lin, and Agrawal, Opt. Lett. 31, 1295 (2006)
130-fs pulses launched inside a 5-mm-long waveguide (N = 1).
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e Ultrashort pulses are affected by a multitude of nonlinear effects,

such as SPM, XPM, FWM, and SRS, together with dispersion.

e All of these nonlinear processes are capable of generating new
frequencies outside the input pulse spectrum.

e For sufficiently intense pulses, the pulse spectrum can become so
broad that it extends over a frequency range exceeding 100 THz.

e Such extreme spectral broadening is referred to as supercontinuum
generation.

e This phenomenon was first observed in solids and gases more than
35 years ago (late 1960s.)

e Since 2000, microstructure fibers have been used for supercontin-
uum generation.
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SC Generation in a microstructured fiber

Power (normalized)
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Ranka et al., Opt. Lett. 25, 25 (2000)

e Output spectrum generated in a 75-cm section of microstructured
fiber using 100-fs pules with 0.8 pJ energy.

e Even for such a short fiber, supercontinuum extends from

400 to 1600 nm.

e Supercontinuum is also relatively flat over the entire bandwidth.
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SC Generation in Silicon Waveguides
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Yin, Lin, and Agrawal, Opt. Lett. 32, 391 (2007)
e TPA reduces SC bandwidth but is not detrimental.

e Nearly 400-nm-wide supercontinuum created within

a 3-mm-long waveguide.

e Required pulse energies are relatively modest (~1 pJ).
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SC Generation in Silicon Waveguides

e SOl waveguides also support higher-order solitons when
N = (YPyT}/|Ba|)"/? exceeds 1.

e Higher-order dispersion should leads to their fission into much
shorter fundamental solitons: T} = Ty /(2N + 1 — 2k).

e Intrapulse Raman scattering absent because of a narrow Raman
bandwidth: no significant red-shifting of solitons.

e Similar to the case of optical fibers, each soliton emits dispersive
waves on the blue side when 5 > 0.

e Numerical simulations confirm the potential of SOl waveguides for
SC generation.

e Spectral broadening over 350 nm is predicted for femtosecond pulses.
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Cross-Phase Modulation

e Consider two optical fields propagating simultaneously.

e Nonlinear refractive index seen by one wave depends on the
intensity of the other wave as

AI’lNL = n2(|A1]2—|—b|A2|2)
e Total nonlinear phase shift in a fiber of length L.:

¢NL == (27'L'L/7L)I’l2[11 (t) $ blz(t)].

e An optical beam modifies not only its own phase but also of other
copropagating beams (XPM).

e XPM induces nonlinear coupling among overlapping optical pulses.
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Hsieh et al., Opt. Exp. 15, 1135 (2007)

e 200-fs pump and probe pulses (at 1527 and 1590 nm) launched into
a 4.7-mm-long SOl waveguide (w =445 nm, h =220 nm).

e Pump and probe pulses travel at different speeds (walk-off effect).
e XPM-induced phase shifts occurs as long as pulses overlap.

e Asymmetric XPM-induced spectral broadening depends on pump
power (blue curve); Probe spectra without pump (red curve).
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e A Mach-Zehnder interferometer is often used for optical switching.

e Output switched to a different port using a control signal that shifts
the phase through XPM.

e If control signal is in the form of a pulse train, a CW signal can be
converted into a pulse train.

e Turn-on time quite fast but the generation of free carriers widens
the switching window (depends on the carrier lifetime).
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Experimental Demonstration

UNIVERSITY of

& ROCHESTER

A
BPF }—# Oscilloscope |

P

P _A_ PBS V2  cw

MFL } - O — N\

S 90/10

=D e

CcwW

Laser SOl
I 0—|
L=25cm 50/50

Splitter

Boyraz et al., Opt. Exp. 12, 4094 (2004)

e A Mach—Zehnder interferometer used for optical switching.

e Short pump pulses (<1 ps) at 1560 nm pass through the arm

containing a 2.5-cm-long SOl waveguide.

e CW probe experiences XPM-induced phase shift in that arm.

e Temporal slice of the probe overlapping with the pump is optically

switched.
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Boyraz al., Opt. Exp. 12, 4094 (2004)

e Instantaneous switching on the leading edge, as expected, with high
on—off contrast.

e Long trailing edge results from the free-carrier effects.

e Free carriers provide an additional contribution to the probe phase
by changing the refractive index.
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e Pump pulse propagates in the TE mode of a silicon waveguide.

e CW probe polarized at 45° excites TE and TM modes.

e |ts TE component acquires an XPM-induced phase shift.

e Output probe elliptically polarized (nonlinear polarization rotation).

e Probe transmitted through the analyzer only when a pump pulse

opens the Kerr gate.




The Institute of _
OPTICS

Numerical Results

D ROCHESTER

5 1 1 5 1 1
2 T=1ns T =10 ps 3 T=1ns T =10ps
Sos ° 08 0 Sos 0 08 0
s 5
£o06 0.6 £o0s6 0.6
2 40 x—> ° 30 x—>
T o4 0.4 T o4 0.4
N N
s T
£ 02 0.2 £ 02 0.2
s E
0 0 0 0
-10 -5 0 5 10 -10 -5 0 5 10 -10 -5 0 5 10 -10 -5 0 5 10
L1 1 L1 1
2 T,=1ps T,=100fs 2 T=1ps T,=100fs
808 0.8 go0s8 0.8
H 2
Zos 0.6 Sos6 0.6
o o
T 04 0.4 T 04 0.4
N N
Eo2 02 €o2 02
S S
z o Z 9 0
-10 -5 0 5 10 -10 -5 0 5 10 -10 -5 0 5 10 -15 -10 -5 0 5
TIT, TIT, TIT, TIT,

Yin et al., Opt. Lett. 34, 476 (2009)
Switching windows (red) for 4 different pump pulses (blue).

e Cross section: (left) 650 x 450 nm? and (right) 450 x 450 nm?.

e Free-carrier and walk-off effects play important roles.
e Free-carrier effects reduced for short pump pulses.

e Birefringence effects minimized for square waveguides.
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Experimental Setup
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SOl waveguide
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e Two EDFAs and PCs used for pump and probe (CW) signals.

e CWDM coupler combines the pump and probe.
e Optical bandpass filter (OBF) blocks the pump.
e Linear birefringence canceled by the PC at the output end.

e PBS helps us to display both probe components simultaneously.
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Experimental Results
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Autocorrelation Trace

Time (ps)

Lee, Yin, Agrawal, Fauchet, Opt. Express 18, 11514 (2010)

e Blue peaks show normal switching at 44-MHz repetition rate of

500-fs pump pulses.

e Red dips show the case in which each pump pulse blocks the probe

transmission.

e Switching window < 1 ps wide at pump powers <2 W.
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Stimulated Raman Scattering
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e Scattering of a pump beam from vibrating molecules creates a
Stokes beam down-shifted in frequency by a specific amount.

e Frequency shift is set by a vibrational mode (phonons).

e Raman gain spectrum exhibits a dominant peak at 15.6 THz with
a 105-GHz bandwidth (=1 nm wide near 1550 nm).

e Peak gain for silicon >1000 larger compared with silica.
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Theory behind Raman Amplifiers and Lasers

e Pump and signal powers satisfy a set of two coupled equations:

JoP
8—Zp = — (0t + 0tp) Py — Bop P, 13 — 2[5 PP, — grEsPp
dP, .

aZ — _(a18+afS)Ps_ﬁSSPs _zﬁSPPpRS‘—'_gRPpPs

e Signal loss by free carriers (045 = 05N ) limits Raman amplification.

e For net amplification to occur, the carrier lifetime should satisfy

hwp(gR . 2B5p)2
2046 chﬁpp

To < Tth =

e A Raman laser cannot function if this condition does not hold.
Q. Lin et al., Opt. Express 15, 16604 (2007).
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Raman Amplifiers
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Jalali et al., IEEE JSTQE 12, 412 (2006)

e CW pumping leads to accumulation of free carriers through TPA.
e Free-carrier absorption introduces losses for pump and signal.

e No signal gain occurs for T > 10 ns.
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Pulsed Raman Amplifiers
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Jalali et al., IEEE JSTQE 12, 412 (2006)

e Pulsed pumping can provide >20-dB gain if spacing among pulses
is much larger than Teg (R, Tesr < 1).

e Free carriers can then decay before the next pulse arrives.
e Pump pulses (~30 ps) at 1540 used to amplify a 1673-nm signal.
e 20-dB net gain realized at 37-W peak power of pump pulses.
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Raman Lasers
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Boyraz and Jalali, Opt. Exp. 12, 5269 (2004)
e Pumped with 30-ps pulses at 1540 nm at 25-MHz repetition rate.

e Produced 18 ps pulses at 1675 nm at the same repetition rate.
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Jones et al, Opt. Exp. 13, 519 (2005)
e CW pumping can be used if free carriers are removed quickly.

e A reversed-biased p-n junction is used for this purpose.
e Electric field across the waveguide removes electrons and holes.

e Drift time of carriers is shorter for larger applied voltages.
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CW Silicon Raman Amplifiers
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Jones et al, Opt. Exp. 13, 519 (2005)
e A 4.8-cm-long waveguide CW pumped at 1458 nm (signal at 1684 nm).

e Output pump and signal powers increase with applied voltage.

e Effective carrier lifetime decreases from 16 to 1 ns.
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CW Silicon Raman Lasers
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Four-Wave Mixing (FWM)

Pump and signal launched
into a silicon waveguide

Single Pump ;
B S s SO « Virtual
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A
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Energy conservation
W+ W = 03+ )y

Momentum conservation Hu et al,

Bi+B=Bs+Bs (2011).

Opt. Exp. 21, 19886
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e FWM can be used to amplify a weak signal.
e Pump power is transferred to signal through FWM.

e The idler (generated as a byproduct) acts as a copy of the signal at
a new wavelength (useful for wavelength conversion).

e Parametric amplifiers can provide gain at any wavelength using
suitable pumps.

e They are also useful for all-optical signal processing.

e Optical fibers are often used, but the use of SOl waveguides would
result in a much more compact device.

e Two-photon and free-carrier absorptions play an important role.
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FWM Theory for Silicon Waveguides

e Full vector theory developed by Agrawal et al. in 2006: Opt. Exp. 14,
4786 (2006).

e Relatively long carrier lifetime in silicon waveguides limits the FWM
efficiency in the case of a CW pump.

o B> <0 (red); B, =0 (blue); B> > 0 (green).
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FWM with Short Pump Pulses
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Lin et al., Opt. Exp. 14, 4786 (2006)

e FCA is reduced significantly for pump pulses much shorter than

carrier lifetime 7.

e Figure shows the case of 10-ps pump pulses with 7. =1 ns.

e Phase-matching condition is satisfied even for signal that is shifted

by 70 nm from the pump wavelength.
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Single and Dual-Pump Configurations
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Lin et al., Opt. Express 14, 4786 (2006)

e Parametric amplifiers with a large bandwidth can be realized by
pumping an SOl waveguide with two pumps.

e This is possible because of a relatively short device length.

e Recent experiments with SOl waveguides are encouraging.




The Institute of h
OPTICS

& ROCHESTER

Wavelength Conversion of Telecom Channels
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e Dispersion control essential (300 nmx750 nm device).

e FWM efficiency —15 dBm (CW pump);

Conversion bandwidth >150 nm.

e Eye diagrams show no degradation when the wavelength of a 10-
Gbs/s signal is converted using a 300 nmx500 nm device.
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Demultiplexing at 160 Gb/s
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Demultiplexing at 1280 Gb/s
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FWM in Mid-Infrared Region
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e Pump and signal laser
wavelengths near 2 um.

(a) -10
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e FWM  efficiency  of
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e Silicon waveguides used
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were up to 2.5 cm long.
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Time lens and Time Microscope

& ROCHESTER

Time Lens
frequency frequency

Petrillo et al., Opt. Exp. 21, 508 (2013)

e FWM can be used to create a time lens (temporal analog of a lens)

e Chirp imposed on a pump pulse is transferred to the idler pulse.
e Time lens can be used to make a Fourier lens shown in Figure.
e It can also be used to build a time-domain microscope.

e Both temporal magnification and compression become possible with
such time-domain imaging of optical pulses.
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Khasminskaya et al., Opt. Quant. Electron. 45, 357 (2013)

e Spontaneous FWM in silicon waveguides can create entangled pho-
ton pairs.

e When pumped with one or two pump beams, the signal and idler
photons are created simultaneously from quantum noise.

e Such entanglement is useful for a variety of quantum applications
including quantum computing and quantum cryptography.

e Lin and Agrawal showed in 2006 that silicon waveguides work better
than optical fibers: Lin et al., Opt. Lett. 31, 3140 (2006).
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Photon-Pair Generation
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Lin et al., Opt. Lett. 31, 3140 (2006)

e Spontaneous FWM in fibers creates entangled photon pairs but
suffers from the noise induced by Raman scattering.

e The use of SOl waveguides avoids this problem because Raman
scattering does not occur when TM mode is excited.

e Several experiments have confirmed our theoretical predictions.
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Experimental Results
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e A PhC waveguide with 10-ps pump pulses used in 2012 to generate
photon pairs with high coincidence-to-accidental ratio (CAR).

Xiong et al. JSTQE. 17, 1676, (2012)

e Sharping et al. (Opt. Exp. 14, 12388, 2006) used 5-ps pump pulses
to generate good-quality photon pairs.

e Takesue et al. (Opt. Exp. 16, 5721, 2008) used 90-ps pump pulses
to create polarization-entangled photon pairs.
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Concluding Remarks
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e Nonlinear effects in silicon waveguides can be used to make many
active and passive components.

e SPM is useful for supercontinuum generation among other things.

e Cross-phase modulation can be used for optical switching, wave-
length conversion, and optical signal processing.

e Nonlinear polarization rotation useful for making ultrafast photonic
switches.

e Stimulated Raman scattering converts silicon waveguides into
Raman amplifiers and lasers.

e Four-wave mixing is useful for wavelength conversion, tunable para-
metric delays, phase conjugation, and photon-pair generation.
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