
  XIII Escuela de Óptica Moderna  O. Pottiez et al. 

O. Pottiez1, B. Ibarra-Escamilla2, E. A. Kuzin2, J.C. Hernández-García1, A. 
González-García1,2, A. Martínez-Ríos1 , D. Monzón-Hernández1 , 

G. Salceda-Delgado1 
 

1Centro de Investigaciones en Óptica, León, Gto., Mexico 
2Instituto Nacional de Astrofísica, Óptica y Electrónica, Puebla, Pue., Mexico 



  XIII Escuela de Óptica Moderna  O. Pottiez et al. 

Introduction 

Passively mode-locked fiber lasers are simple, compact and low-cost sources of 

ultrashort pulses. An attractive architecture is the figure-eight laser: saturable absorber 

(SA) action provided by a Nonlinear Optical Loop Mirror (NOLM) (or NALM). 

For some applications like supercontinuum generation or metrology, desirable 

characteristics include high pulse energy, large optical bandwidth and low temporal 

coherence. 

In general however, energy of ultrashort pulses from fiber sources is limited by 

nonlinearities in the fiber (0.1 nJ for soliton lasers, 2-3 nJ for stretched-pulse fiber 

lasers). Moreover, due to their large bandwidth and optical coherence, such pulses 

broaden and vanish rapidly in long dispersive fibers. 

 We report on advances of the study of a passively mode-locked fiber laser that 

generates sub-nanosecond wave packets with subpicosecond temporal coherence, 

> nJ energy and a wide bandwidth of several tens of nm: the noise-like pulses. 

Adjustability of pulse parameters and the possibility of multiple pulsing are 

demonstrated. 
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A figure-eight laser is a ring laser 

including a NOLM 

 A figure-eight laser consists in a ring laser (left) in which a NOLM is inserted (right) 

 A NOLM (Nonlinear Optical Loop Mirror) operates as a saturable absorber (SA), favoring pulsing against 

continuous-wave lasing 
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A saturable absorber absorbs at low 

power and transmits at high power 

The mechanism of pulse formation in a laser including a SA is passive mode locking 
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The nonlinear Sagnac 

interferometer is a switch 
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Un NOLM (Nonlinear Optical Loop Mirror) includes: 

 A directional coupler 

 A piece of fiber connecting the coupler output ports 

  The Kerr non linear effect in silica fiber induces a power-dependent phase shift yielding a 
power-dependent transmission (switching) 

 In convencional schemes, the loop is power-asymmetric (e.g., asymmetric coupler) : 

 Advantages: extremely fast, femtosecond (fs) response time, adjustment through birrefringence bias (PC) 

= Sagnac interferometer (= mirror) 

Input Pin 
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 Drawbacks: Transmission ajusted empírically through PC, low flexibility, hardly reproductible (depends on 

environmental conditions) 

Adjustable 

through PC 
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Nonlinear Polarization Rotation 

can induce switching, too 

  A en power-symmetric, polarization-asymmetric NOLM allows 

switching 

 
effAnb  3/~4 2Couped nonlinear 

equations: 
.

2

1

2

3
2

;
2

1

2

3
2

22

22



















 















 

CAibPCCCibPC

CAibPCCCibPC

sz

sz

Stokes 

parameter: -1           0             1 

The nonlinear phase shift of a beam propagating in a fiber depends on 

its power, as well as its polarization (Stokes parameter) 
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A new scheme was poposed, power-

symmetric, polarization-imbalanced 
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 Polarization asymmetry between counter-propagating beams due to /4 wave retarder 

 

 High torsion reduces the effect of residual birrefringence of standard fiber (~isotropic behavior) 

 Optical activity rotates polarization, 

but maintains ellipticity (and Stokes 

parameter) of each beam 
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 Kuzin et al., J. Opt. Soc. 

 Am. B 18 (2001), 919-925 
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Switching characteristic is adjustable 

through polarization control 

 O. Pottiez et al., Opt. 

Comm. 254, 152 (2005). 

 

 B. Ibarra-Escamilla et al., 

Opt. Express 13, 10760 

(2005).  
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 Low-power NOLM transmission and slope, 

and dynamic range controlled through a 

 

 Switching power adjusted through  
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Figure-eight laser scheme 

under study 

 A polarization-imbalanced NOLM is inserted in the laser 

 Quarter-wave retarder (QWR) angle determines low-power NOLM transmission 

 Input polarization to the NOLM is set linear 

 Input polarization angle , controlled through half-wave retarder (HWR), determines switching power 
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The proposed scheme allows 

adjusting the critical power 
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 Allows adjusting 

temporal/spectral pulse 

properties 
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Wide and smooth optical 

bandwidth is observed 
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Oscilloscope trace 

FWHM = 16 - 52 nm 

Red shift as bandwidth increases and asymmetry 

of the wider spectra attributed to Raman SFS 

 For proper adjustments of the QWR and HWR, non-

self-starting mode locking is observed. Repetition rate 

= 1.6 MHz 
 

 

 Spectral width varies depending on QWR and HWR 

adjustments 



  XIII Escuela de Óptica Moderna  O. Pottiez et al. 

Autocorrelation traces shows 

sub-ps peak riding wide pedestal 
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Ratio between narrow peak and pedestal level invariably = 2:1  
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Coherence of pulses is small 

Autocorrelation traces directly at laser output and after 760 m of SMF-28 fiber (D = 17 ps/nm/km) 
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The central peak is still observed at the fiber output, even if it is substantially broadened (8 times) and the 

autocorrelation intensity is reduced 

In comparison, a transform-limited sub-ps pulse with comparable bandwidth (~50 nm) would vanish completely 

due to fiber dispersion 
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Scheme used for numerical 

simulations 
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 A 50-nm FWHM bandpass filter takes into account the bandwidth limitation of EDF gain 

 Gain saturates on pulse energy 

 QWR angle α = -π/16 (low-power NOLM transmission ≈ 0.1) and input polarization angle 

relative to QWR axes ψ = 0.35π/4 → switching power Pπ ≈ 200 W (Pπ min ≈ 120 W if ψ = π/4 ) 

15 m 

SMF-28 

LA = 4m 

Low-power gain G0 = 2000 

(uniform g0 = G0/LA = 500/m)  

Esat = 0.8 nJ 

Polarization 

assumed linear 

This scheme is very similar to the experimental scheme  
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Numerical model 
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Numerical results are quite 

consistent with experiment 

 Although there is no convergence to a constant pulse shape, a variable sub-ns packet of sub-ps 

pulses with stable caracteristics (peak power, duration) is maintained. Pulse energy = 1.4 nJ 

 Autocorrelation trace (averaged over many cycles) presents a sub-ps central peak riding a sub-ns 

pedestal (the ratio however is > 2, and may vary with simulation parameters) 

 After averaging over many cycles, a smooth and relatively wide (10-nm FWHM) output spectrum 

is obtained 
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Noise-like pulses were used for 

supercontinuum generation in standard fiber 
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 The spectrum widens towards longer wavelength 

due to Raman self-frequency shift (SFS) 

 Random amplitudes of sub-pulses generate a 

relatively flat spectrum 

 

Experiment 

Simulation 

 Hernandez-Garcia et al., 

Laser Phys. 22 (2012), 221-227 

Advantages of noise-like pulses for SCG: 

 High pulse energy 

 Wide optical spectrum 

 

Pin = 20.4 mW 



  XIII Escuela de Óptica Moderna  O. Pottiez et al. 

Numerical simulations predict 

further widening to the right 

~70% of the total 

pulse energy moved 

towards other 

wavelengths 

Initial spectrum 

Simulation 

Experiment 

 Hernandez-Garcia et al., Opt. 

Comm. 285 (2012) 1915-1919 
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A Mach-Zehnder filter was 

inserted in the laser 

 A periodic filter made by two fiber tapers in series is inserted in the ring section of the laser 
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A fiber device is used 

for spectral filtering 
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 The optical filter consists of two tapers fabricated in series in a Nufern 980HP fiber 

 = Mach-Zehnder interferometer: at the first taper the fundamental core mode partially couples 

to cladding modes, and a fraction of the light guided in the cladding modes couples back to the 

core mode at the second taper  

 Periodic filter with 1.65 nm period, 6 dB modulation depth and ~0.5 dB insertion loss 

 Monzon-Hernandez et al., Opt. Lett. 36 (2011), 4380-4382 
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Tunable 1- and simultaneous 4- 

CW operations were observed 

 Simple WR adjustments allow observing different CW regimes 

 Single wavelength operation tunable over 22 nm by steps of 1.65 nm was possible. No lasing around 1540 

nm (gain depression) 

 Multiwavelength operation in the 1530 nm region was also observed, with up to 4 consecutive wavelengths 

(1.65 nm separation), stable over a few min in spite of gain competition (homogeneous broadening). 

 Mechanisms allowing wavelength tuning through WR adjustments: 

 Adjusting QWR angle in the Sagnac loop modifies cavity loss and the balance between absorption 

and emission that determines gain spectrum 

 Adjustable cavity birefringence + polarizer = adjustable filtering effect 
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Fundamental mode-locking was 

observed 

Oscilloscope trace 
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 For some adjustments, non-

self-starting mode locking 

was observed at 1.6 MHz 

(fundamental mode locking) 

 Measurements indicate that 

pulses are noise-like pulses 

(large collections of sub-ps 

pulses with random 

amplitudes and durations)  

 Results similar to filterless 

laser  filter has little 

influence on mode locking 

except for introducing ~40% 

loss 

 Pottiez et al., Appl. Opt. 50 

(2011), E24-E31 
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2nd-harmonic mode locking was 

also observed 

 In some cases, 2nd-harmonic mode locking was 

observed (2 pulses in the cavity) 

 Measurements are qualitatively similar to the 

fundamental ML (noise-like pulses)  

 During a few s, stable operation with generation of a 

train of equally spaced pulses 

 After that, one of the two pulses suddenly vanishes, 

then reappears at the other pulse position and quickly 

moves away from it back to its initial position (~1s). 

Oscilloscope traces 

 WR adjustments allow adjusting phase between solitons 

and dispersive wave. This causes slight wavelength shifts  

between solitons (~0.1 nm). For some adjustments, pulses 

move apart. 
 

 MZI filter may favor splitting of the bunch by 

introducing temporal shift (~5ps). 

 Stabilization of 2HML by acoustic effects.  
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 Gray et al., J. Opt. Soc. Am. B 14 (1997), 144-154 
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Multiwavelength 

passive Q-switching 

 For some WR adjustments, unstable passive Q-switching was observed. The pulses usually carry beat notes 

at the cavity fundamental frequency and its harmonics. 

 A large number of wide spectral lines is systematically observed in the spectrum, one of them much higher. 

 Highly doped Er fibers (with Er clusters) are known to behave like slow saturable absorbers, yielding 

pulsed behavior 

 

 Sagnac loop with adjustable WR = tunable attenuator. Self-pulsing appears when WR adjusted for high 

cavity losses (low photon lifetime). 
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 F. Sanchez et al., Phys. Rev. A 48 (1993), 2220-2229 
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Multiple pulsing (10) was observed 

in normal dispersion regime 
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NOLM overdriving 

seems to be the cause 

of multiple pulsing 
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Conclusions 

 We studied experimentally a figure-eight laser scheme including a polarization-imbalanced NOLM 

with linear input polarization. 

 The angle of linear polarization at the NOLM input is adjustable through a HWR, which allows 

adjusting the NOLM switching power, and its low-power transmission and dynamic range can be 

adjusted through a QWR. This allows controlling the NOLM switching characteristics. 

 For certain adjustments, noise-like pulses were generated. These are large sub-ns collections of sub-

ps pulses with double-scaled autocorrelation and very wide and smooth optical spectrum. 

 Adjusting the NOLM switching power allows adjusting the temporal and spectral properties of the 

noise-like pulses.  

 Although usually only one noise-like pulse develops in the cavity, multiple pulsing has been 

observed in certain cases. Again, the adjustment of the NOLM switching power appears to be 

critical for multiple pulsing. 

 Because they present relatively high energy, a wide spectrum and low coherence, these pulses are 

attractive for applications in metrology, sensing and for seeding supercontinuum generation. 
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