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The transition matrix for a polarizer is given by,

P(θ) =
[
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]
, (2)
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Coincidence detections among N photodetectors (here N = 2) are proportional
to the single time, multiple location second order cross correlation, i.e.:
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It is shown in Coherence theory that the numerator of Eq. (4) reduces to the
trace of J, the system coherence or “polarization” tensor. It is easy to show that
for this model the denominator consists of constants equal to 1.
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where n and m take the values 0 and 1 randomly.

The polarizing beam splitter (PBS) is modeled using the transition matrix for
a polarizer, P(θ), Eq. (4) where θ = π/2 accounts for a reflection and θ = 0 a



transmission. Thus the final field impinging on each of the four detectors is:

E1 = P(θ1)A1

E2 = P(θ2)(P(0)B2−P(π/2)A3)
E3 = P(θ3)(P(0)B3−P(π/2)A2)
E4 = P(θ4)B4

(7)

which, using Eq. (4), does not result in a simple expression; but numerically:
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The principle results reported by PAN et al.: Of the 16 possible regimes set-
ting: θi = {0, π/2} only {0, π/2, π/2, 0} and {π/2, 0, 0, π/2}yield a four-fold
coincidence count, C; the regime {π/4, π/4, π/4, π/4} occurs with an intensity
C/4 and the regime {π/4, π/4, π/4, −π/4}with zero intensity. Further, both of
the later regimes yield an intensity of C/8 when the time between pair creation
is so large that that there is no “cross-talk” between channels 2 and 3. Our
model mimics everything.
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Results of a classical calculation of four-fold coincidences. The upper curve,
without PBS’s, on the left is “prepurified;” the fact that the visibility of the other
curve with PBS’s is higher is said to exhibit “entanglement purification.” Irrespec-
tive of terminology, the phenomenon is nonquantum: Malus’ Law or geometry.
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Franson-type experiments

These experiments exploit time-delays between pulses to define the orthog-
onal states played by the two states of polarization in the setups described
above.See Fig. below.





To model them, a simple tactic is to assign the signals in the long and short
paths to orthogonal dimensions of a vector space; the resulting calculations are
transparent and devoid of irrelevant, gratuitous complexity. For example:

Er = (exp(−i(kx−ωt)+φ), exp(−i(kx−ωt))/
√

2
El = (exp(−i(kx−ωt)+ϕ), exp(−i(kx−ωt))/

√
2

, (8)

where φ and ϕ are the extra phase shifts introduced in the long paths. Then,
using Eq. (4), with the convention that the tensor product in be replaced by a
vector inner product; i.e.,

P(φ, ϕ) =
(E∗

r ·E∗
l )(El ·Er)

(E∗
r ·Er)(E∗

l ·El)
, (9)

(to algebraically enforce the orthogonality in calculations that time-delay en-
forces in the experiment) quickly gives the observed correlation as a function of



the phase shifts:

P(φ, ϕ) ∝ 1+cos(φ−ϕ), (10)

which exhibits the oscillation with 100%visibility characteristic of idealized ver-
sions of these experiments.
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Brendel type experiments

In the above experiment the radiation source was taken to be ideal, that is, it
produced two signals of exactly the same frequency with no dispersion. In some
experiments, the source used was a nonlinear crystal generating two correlated
but not necessarily identical pulses, which satisfy ‘phase matching conditions’
so that if one signal in frequency is above the mean by s (spread), the other
is down in frequency by the same amount. This leads to an additional phase
difference at the detectors which is also proportional to those already there; i.e.,
sϕ and sφ, so that:

Er = (exp(−i(kx−ωt)+φ(1+s)), exp(−i(kx−ωt))
El = (exp(−i(kx−ωt)+ϕ(1−s)), exp(−i(kx−ωt)) . (11)

Since the value of s is different for each pulse (photon) pair, the resulting signal



is an average over the relevant values of s:

1
2s

Z s

−s
P(φ, ϕ, s)ds, (12)

where P(φ, ϕ, s) was computed as for ‘Franson’ experiments. The final result
closely matches that observed by BRENDEL et al. See following fig.



0

0.5

1

In

-10 0 10 20 30
phase shift



0

0.5

1

In

-10 0 10 20 30
phase shift



Suarez-Gisin type experiments

In experiments of this type one of the detectors is set in motion relative to
the other. By doing so with appropriately chosen parameters, it is possible to ar-
range the situation such that each detector precedes the other in its own frame.
Thus, not only is the ‘collapse’ of the wave packet “nonlocal,” it occurs such that
there is also “retrocausality.” In the model proposed herein, however, this com-
plication (paradox) can not arise in the first instance. All the properties of each
pulse are determined completely at the common point at which the signals are
generated. Properties measure at one detector in no way determine those at
the other detector, regardless of the order in which an observer receives reports
of the results from the two detectors, or regardless of what conditional probabil-
ities he might write to describe the state of his hypothetical or real knowledge
as determined by the time order of his receipt of information from the detectors.
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Abstract
Entanglement, including ‘quantum entanglement’, is a consequence of
correlation between objects. When the objects are subunits of pairs which in
turn are members of an ensemble described by a wavefunction, a correlation
among the subunits induces the mysterious properties of ‘cat-states’.
However, correlation between subsystems can be present in purely
non-quantum sources, thereby entailing no unfathomable behaviour. Such
entanglement arises whenever the so-called ‘qubit space’ is not afflicted with
Heisenberg uncertainty. It turns out that all optical experimental realizations
of the Einstein, Podolsky and Rosen (EPR) Gedanken experiment in fact do
not suffer Heisenberg uncertainty. Examples will be analysed and
non-quantum models for some of these described. The consequences for
experiments that were to test EPRs contention in the form of Bell’s theorem
are drawn: valid tests of EPR’s hypothesis have yet to be done.

Keywords: Entanglement, non-locality, EPR correlations, Bell’s theorem,
quantum mechanics

1. Introduction

The above title needs ‘disentangling’. The quantum
wavefunction of entangled, i.e. of correlated subsystems,
cannot be written as the product of the wavefunctions for the
subsystems. Likewise, the probability of correlated events
cannot be written as the product of probabilities for two
independent events. The latter fact is elementary and very well
understood; it presents absolutely no mystery, but in contrast,
the same fact is utterly impenetrable in quantum mechanics
(QM).

What is the difference?
It arises from the following considerations. In probability

theory, the probability for joint events is given in general by
Bayes’ formula

P (a, b) = P (a)P (b|a) (1)

where P (b|a) is the conditional probability that the event
b occurs given that event a has been seen [1]. When the
two events are correlated, in other words are not statistically
independent, then (1) cannot be written as the product
of independent probabilities, P (a)P (b), that is, they are
‘entangled’. This is a statement about the knowledge that the
observer has about the joint events; it is an epistemic statement,
and, as such, the dependence of P (b|a) on a is devoid of
communicative implications.

Now, in QM, according to the Born interpretation, the

modulus squared of a wavefunction, i.e. ψ∗(x)ψ(x), is the

probability that the object to which it pertains will be found

in the infinitesimal volume d3x. This straightforward concept

is complicated, however, by the peculiarity of QM, namely,

a wavefunction is known empirically to diffract at boundaries

just like water or electromagnetic waves and this seems to make

sense only if wavefunctions have ontic substance. In turn,

this appears to vest a causative relationship into conditional

probabilities computed from wavefunctions for correlated

events. That is, if wavefunctions are onta, then when a

measurement collapses one member of a correlated pair, then

the onta of the other member must likewise instantly collapse

also, even if it is located at a space-like displacement—in

contrast to the fundamental precept of special relativity that

no physical interaction can transpire faster than the speed of

light. On the other hand, were a wavefunction only a symbol

for information, as are expressions in probability theory, such

a collapse would not violate physics precepts. In short,

entanglementQM is somehow ontic, but entanglementProb is

epistemic. In this light the title is: Is (in the microscopic

domain) entanglementP rob always entangledQM? The purpose

of this paper is to argue that in virtually all of the crucial

experimental tests of Bell’s theorem that the answer is: no!

Born’s interpretation of the wavefunction has led many, in

particular Einstein, Podolsky and Rosen (EPR), to argue that

1464-4266/02/030121+06$30.00 © 2002 IOP Publishing Ltd Printed in the UK S121
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• Measurement stations: polarizing beams splitters feeding two each
photodetectors.

• Data collection & analysis: “coincidence circuitry:” also per Malus’ Law get
relative intensity:

κ∗ = cos2(θr−θl)−sin2(θr−θl), (13)

• Expand with:

cos(θr−θl) = cos(θr)cos(θl)+sin(θr)sin(θl),

sin(θr−θl) = sin(θr)cos(θl)−cos(θr)sin(θl); (14)





• Get values of individual terms from Malus’ Law:

cos(θl) =
√

Nhl/N,

sin(θl) =
√

Nvl/N.
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Abstract
Based on the observation that polarization phenomena of EM waves are
geometric rather than quantum mechanical in nature, it is argued that
experiments involving ‘entangled polarization’ do not address the issues
brought up by EPR. A fully classical explanation is offered for a recent
experiment of this type, and a fully classical (local and realistic)
photoelectron-by-photoelectron simulation is described of ordinary two-fold
experiments thought to prove Bell’s ‘theorem’.
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(Some figures in this article are in colour only in the electronic version)

1. Background facts

Any object can be viewed from various angles. When such

changes in view-point are restricted to the surface of a sphere

centred on the object of interest, then these changes in
appearance can be systematized in terms of the change of

viewing angle as represented by a vector from the centre of the
sphere to its surface. In mathematics this structure is captured

in terms of the group SO(3). The generators of this group do

not commute.
This structure is not limited to describing just changes in

view-point, of course. It would also describe, for example,
changes of a k-vector specifying a plane wave. However,

in so far as electromagnetic plane waves are comprised of

transverse oscillations, there are for each vector direction on
the sphere two transverse directions, i.e., there are also two

‘polarizations’. As with the wavevector, these polarization
subdirections can also be viewed from various angles. If the

wavevector is fixed, then the change in view-point is restricted

to rotations, not on the sphere, but on the circle. In mathematics
this substructure is rendered in terms of the group SO(2).

Its generators, unlike those for rotations on the sphere, do
commute.

Now however, when the wavevector is allowed to

wander over the sphere, it drags along with it the two
orthogonal ‘polarization’ vectors, so that for different

wavevector directions, they too inherit the noncommutativity

of the wavevector. It is easy to see that this noncommutativity is

not due to anything except the rotation on the sphere, as passed

along. In mathematics all this structure too is codified, in terms

of the group SU (2). From these considerations it is absolutely

clear why the groups SO(3) and SU (2) are homomorphic:

they encode the very same structure as inherent in rotation on

the sphere, once for a vector and once for its two orthogonal

partners [1].

With respect to polarization, as physics, all this was

worked out long ago by Stokes before Planck, Pauli, etc were

even born. This is the reason that the so-called ‘Pauli spin

matrices’, which in the SU (2) structure turn out to have the

properties (under rotation on the sphere) of basis elements

for SU (2), were in use as ‘Stoke’s operators’ decades before

spin was ever conceived. Their noncommutativity is a purely

geometrical fact, whether in connection with polarization or

spin.

All of the above is beyond any dispute; it is in no way

wild, iconoclastic speculation by this writer. Nevertheless, it

has serious iconoclastic consequences for the interpretation of

some contemporary physics.

2. Main issues

Einstein, Podolsky and Rosen (EPR) tried to reveal the

incompleteness of Quantum Mechanics (QM) by employing

1464-4266/04/060544+05$30.00 © 2004 IOP Publishing Ltd Printed in the UK S544
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Can Data to test a BI be taken?

• What goes into the extraction of a Bell Inequality?

First, recall Z
dx f(x)δ(x− l)δ(x−m) = 0, (15)

whenever l 6= m.

The derivation of a Bell Inequality starts from BELL’s fundamental Ansatz:

P(a, b) =
Z

dλρ(λ)A(a, λ)B(b, λ), (16)

where, per explicit assumption: A is not a function of b; nor B of a; and each
represents the appearance of a photoelectron in its wing, and a and b are the



corresponding polarizer filter settings. This is motivated on the grounds that a
measurement at station A, if it respects ‘locality,’ so argues Bell, can not depend
on remote conditions, such as the settings of a remote polarizer. By definition:

|A| ≤ 1, |B| ≤ 1, (17)

which in this case effectively restricts the analysis to the case of just one pho-
toelectron per time window per detector. Eq. (16) expresses the fact, that when
the hidden variables are integrated out, the usual results from QM are to be
recovered.

The λ above in Bell’s analysis are to be the hypothetical “hidden variables”,
which, if they exist, should render QM deterministic. As is customary, the single
symbol λ represents actually a set of such ‘hidden variables’ that may include
many different characters, such as discrete, continuous, tensor or whatever.
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on remote conditions, such as the settings of a remote polarizer. By definition:

|A| ≤ 1, |B| ≤ 1, (17)

which in this case effectively restricts the analysis to the case of just one pho-
toelectron per time window per detector. Eq. (16) expresses the fact, that when
the hidden variables are integrated out, the usual results from QM are to be
recovered.

The λ above in Bell’s analysis are to be the hypothetical “hidden variables”,
which, if they exist, should render QM deterministic. As is customary, the single
symbol λ represents actually a set of such ‘hidden variables’ that may include
many different characters, such as discrete, continuous, tensor or whatever.



Extraction of inequalities proceeds by considering differences of two such
correlations where (a, b), i.e., the polarizer axis of measuring stations left and
right, differ:

P(a, b)−P(a, b′) =R
dλρ(λ)[A(a, λ)B(b, λ)−A(a, λ)B(b′, λ)] = 0,

(18)

to which one adds ±0 in the form:

A(a, λ)B(b, λ)A(a′, λ)B(b′, λ)−
A(a, λ)B(b′, λ)A(a′, λ)B(b, λ) = 0,

(19)

to get:

P(a, b)−P(a, b′) =R
dλρ(λ)A(a, λ)B(b, λ)[1±A(a′, λ)B(b′, λ)]−R
dλρ(λ)A(a, λ)B(b′, λ)[1±A(a′, λ)B(b, λ)],

(20)



which, in turn, upon taking absolute values and in view of Eqs. (17), Bell wrote
as

|P(a, b)−P(a, b′)| ≤R
dλρ(λ)[1±A(a′, λ)B(b′, λ)]+R
dλρ(λ)[1±A(a′, λ)B(b, λ)].

(21)

Then, using Eq. (16), and the normalization condition
R

dλρ(λ) = 1, he got, for
example:

|P(a, b)−P(a, b′)|+ |P(a′, b′)+P(a′, b)| ≤ 2, (22)

a ‘Bell inequality.’
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Now, however, if the λ are a complete set, thereby rendering everything
deterministic so that all probabilities become Dirac or Kronecker delta distribu-
tions, then the A’s and B’s in Eq. (20) are pair-wise, that is as individual events
comprising the generation at the source of one pair, non-zero for distinct values
of λ, which, by virtue of completeness, do not coincide for distinct events, i.e.,
for different pairs. That is, for each pair of settings (a, b) and iteration of the
experiment, there exists a unique value (or set of values), λ(a,b) say, for which
A(a|λ(a,b))B(b|λ(a,b)) is non-zero (±1 in the discrete case, ±∞ in the continu-
ous case). In other words, each product A(a|λ(a,b))B(b|λ(a,b)) can be written in
the form f (x)δ(x−λ(a,b)), so that all quadruple products

A(a|λ(a,b))B(b|λ(a,b))A(a|λ(a′,b′))B(b|λ(a′,b′)), (23)

are of the form:
f (x)δ(x−λ(a,b))g(x)δ(x−λ(a′,b′)), (24)

where x is a dummy variable of integration to run over all admissible values of



λ. Therefore, such terms with pair-wise different values of λ(ab) in Eq. (20), i.e.,
when either a 6= a′ or b 6= b′, are, in accord with Eq. (15), identically zero under
integration over λ. This annihilates two terms on the left of eq. (22), so that the
final form of this Bell Inequality, resulting from the above complex of hypotheses,
is actually, for example, the trivial identity[?]:

|P(a, b)|+ |P(a′, b′)| ≤ 2. (25)
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• Is taken data compatible with a Bell inequality?

Suppose there is a string of data available from an experiment. It will be com-
prised of four virtually equal length subsets, one for each setting combination;
let the term-wise product series of the first subset be denoted a1b1, the second
a2b′2, etc. (and where another serial subscript is understood). With this notation,
Eq(22) becomes:

|< a1b1 > + < a2b
′
2 > |+ |< a′3b

′
3 >−< a′4b4 > | ≤ 2. (26)

Now, it is obvious that for a particular polarizer setting, the percentage of
+1’s in the total of long enough samples will be equal; i.e., the number for a1

equals the number for a2 etc.; so that one can imagine re-sorting a2 so that it
has nearly the identical serial pattern as a1. Denote the re-sorted version as ã2.



Thus, the re-sorted second term in Eq. (?? ), for example, becomes

a2b
′
2⇒ ã2b̃′2

∼= a1b̃′2

the resorted third term becomes:

a′3b
′
3⇒ ã′3b̃

′
3
∼= ã′3b̃

′
2

and then the fourth term:

a′4b4⇒ ã′4b̃4
∼= ã′3b̃4.

So that Eq. (26) converts to:

< |a1||(b1+ b̃′2)|> + < |ã′3||(b̃′2− b̃4)|> . (27)



Obviously, as b1
∼= b̃4 is not necessarily true identically, that is by physical re-

quirements from the experiment, the loop can not be closed and the whole
expression can not be limited identically to being ≤ |2|.
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Negatability — ???

• Consider very low intensity source “photon” source,
i.e., time interval between pair creation > > H.U. interval within a pair

• “Photon” picture:
Intensity(window width): step-wise increasing

• “Photoelectron” picture:
Intensity(window width): monotonically increasing.
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• “Teleportation” is a gross misnomer,
better: coincidence filtering

• Based on negatable paradigm.

• Details: quant-ph/01 08 057; (+more on arXiv;
search: Kracklauer — all categories/all years)

• e-file with MAPLE or SCILAB routines for the above available upon request.
kracklau@fossi.uni-weimar.de


