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- No-interaction theorems?
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Recognized pathologies in Relativity:

- No 2-body formulation is integrable.

- Self-field diverges

- Asymmetric aging
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Common thread: TIME

Where is the variable conjugate to the system (multi-body) Hamiltonian? I
seek a structure that is based on topological considerations, or, what is the
same: integrability conditions for trajectories over pregeometerized manifolds.
That is, structure that obtains regardless of the specific nature of the metric,
whether Euclidean or Pseudo Euclidean (Minkowski space).

Current Physics theories do not satisfy this structure; they are afflicted by
what may be called:
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TIME CONTORTIONS

Non-locality (instantaneous interaction)

Advanced interaction (i.e.: 1/2(Adv. + Ret.))

Asymmetric aging (“twin paradox”)
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Why worry?

Self consistent philosophy (syntax)

Self consistent physics

Self consistent math (well posed equations)
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Add another story (build up on weak foundation)



What to do?

Tantrum (pitch baby & bath water)

Add another story (build up on weak foundation)

Repair with minimal changes
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What are the repair costs?

- EPR correlations: Abandon mystical explanations

- Advanced interaction: New model for radiation reaction

- Asymmetric aging: Reconcile several (not all) experiments, i.e., muon de-
cay



EPR Correlations; two measurements + HV:

P(a, b) =
Z

P(a, b, λ)dλ . (1)
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EPR Correlations; two measurements + HV:

P(a, b) =
Z

P(a, b, λ)dλ . (1)

In terms of Bayes’ formula:

P(a, b, λ) = P(λ)P(a|λ)P(b|a, λ), (2)

Bell’s encoding of “locality”:

P(a, b) =
Z

A(a, λ)B(b, λ)ρ(λ)dλ, (3)





statistical implications:

B(b|a, λ)≡ B(b|λ), ∀a. (4)

output is uncorrelated regards of λ, #



Is there “advanced interaction”? Fokker gives us:

LF =
N

∑
j
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mj (v j ·v j)
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However, using the above, write:
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L =
2

∑
j=1

mj (v j ·v j)
1/2

−2
2

∑
k6= j

ejek

Z τ

−∞
v j(τ) ·vk(τ′)δ

(
(x j(τ)−xk(τ′))

2
)

dτ′, (6)

which yields as eqs. of motion:

mj(ẍ j)µ =
ej

c

(
∑
k6= j

Fk|ret

)µυ

(ẋ j)υ , j = 1, 2.. (7)



Asymmetric aging:

If v = dx/dτ, then v·v = c2. Thus, whenever: a·v = 0, one may write:

cdτi = (dxi ·dxi)1/2 = ... = (dxj ·dxj)1/2 = cdτ j (8)

which can be rearranged so:

dτ = dt jγ−1
j = dtkγ−1

k . (9)
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Palacios (1891-1970), relativity without asymmetric aging





Motivation

One gets to this ‘clock’ absurdity inevitably by using the Lorentz transfor-
mations—a circumstance that suggests that one might be able to make an al-
teration just there that could serve as a basis for relativity without its current
logical problems. We shall examine, therefore, the fundamentals in search of
altered transformations meeting this requirement, and then describe our results
involving nothing more that the introduction of a factor to the Lorentz transfor-
mations that permits one simultaneously to derive two theories, Einstein’s and
an alternate, by setting this factor as an exponent to either 1 or 0.



Lorentz Transformations

The postulates of Einstein’s theory of relativity.

1. Galileo’s postulate:Given any inertial system, S, another system which
moves at a constant velocity with respect to it, is also an inertial system.

2. Invariance of the speed of light: Light propagates with the same speed in all
inertial frames.

3. Relativity principle:No experiment can distinguish between a stationary sys-
tem and one moving with a constant velocity.
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moves at a constant velocity with respect to it, is also an inertial system.

2. Invariance of the speed of light: Light propagates with the same speed in all
inertial frames.

3. Relativity principle:No experiment can distinguish between a stationary sys-
tem and one moving with a constant velocity.

The problem becomes then of determining the coefficients of the following trans-
formation formulas:
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′+a24t

′+k2

z = a31x
′+a32y

′+a33z
′+a34t

′+k3

t = a41x
′+a42y

′+a43z
′+a44t

′+k4. (10)



x = a11x
′+a12y

′+a13z
′+a14t

′+k1

y = a21x
′+a22y

′+a23z
′+a24t

′+k2

z = a31x
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t = a41x
′+a42y

′+a43z
′+a44t

′+k4. (10)

Let us, to begin, impose the condition t = t ′ = 0 when the origins of both
systems coincide, which leads to k1 = k2 = k3 = k4 = 0.

Since movement is along the axis X ≡ X′, the coordinates y, z correspond-
ing to P(x′, y′ z′) must be independent of time; thus

a24 = a34 = 0.



The conservation of parallelism implies that if x′1 = x′2, then also x1 = x2 for
t = const., likewise for the other coordinates. This same consideration evaluated
on the other axes gives

a12 = a13 = a21 = a23 = a31 = a32 = 0.

Evidentially, the axis X≡X′ is an axis of symmetry, for which whatever holds
between y and y′, is also true for z and z′. As a consequence

a22 = a33 = a.

Let −v be the velocity with which points of Smove with relation to S′, that is

(
∂x′

∂t ′

)

x

≡−v,



and this, with the first of Eqs. (10) and, as shown above, that a12 = a13 = 0, also
leads to

a14

a11
= v.

The considerations above imply, therefore, that by virtue of the first postulate
and the way the axes as well as the origin of time were chosen, it has to be true
that

x = a11(x′+vt′);

y = ay′;

z = az′;

t = a41x
′+a42y

′+a43+a44t
′. (11)



Passing now to the second postulate, we see immediately that if the equa-
tion

x2+y2+z2 = c2t2

must convert to

x′2+y′2+z′2 = c2t ′2,

then the coefficients of the terms x′y′, y′z′, z′x′ must be nullified, so that

a41a42 = 0; a42a43 = 0; a43a41 = 0;

and; by virtue of symmetry about the axis X≡X′, the second of these equations
implies that

a42 = a43 = 0,

which satisfies all these stipulations.



In addition, the second postulate demands satisfaction of the identity

a2
11(x

′+vt′)2+ a2(y′2+z′2)−c2(a41x′+a44t ′)2

≡ ρ2(x′2+y′2+z′2−c2t ′2),

where ρ2 is an arbitrary constant. The final result is:

a2
11−c2a2

41 = ρ2; a = ρ; v2a2
11−c2a2

44 =−c2ρ2;

va2
11−c2a41a44 = 0. (12)

These four equations permit determination of all coefficients of the transforma-
tion equations as a function of an arbitrary constant ρ = a. To do so, solve the
fourth equation for a44 and substitute it in the third equation:

v2a2
11−

v2a4
11

c2a2
41

=−c2ρ2.



From this result solve for c2a2
41 and substitute it in the first equation, giving,

where ρ = a:

a11 =± ρ√
(1−v2/c2)

.

In so far as we supposed that the axes X and X′ are oriented in the same
sense, we have to take for x and x′ the same sign at t = t ′ = 0, let it be “+”.

The third equation then gives:

a44 =± ρ√
(1−v2/c2)

,

and as t ′ > 0 if t > 0, it also has a positive sign.



Finally, the last equation of the set Eq. (12) gives:

a41 = ρ
v/c2

√
1−v2/c2

,



Finally, the last equation of the set Eq. (12) gives:

a41 = ρ
v/c2

√
1−v2/c2

,

so that the final transformation set is:

x = ρ
x′+vt′

α
y = ρy′

z = ρz′

t = ρ
t ′+ v

c2x
′

α
(13)



where:

α =
√

1−v/c2.



where:

α =
√

1−v/c2.

Einstein’s principle of relativity serves to fix the value of the magnitude of ρ
such that it has the exponent: zero; then, in order that the systems Sand S′ be
equivalent, it is necessary that one can pass back and forth by changing v to
−v and primed symbols can be replaced by unprimed ones.

The results then are such, as is easily seen, that ρ = 1, and we get the usual
Lorentz formulas:

x =
x′+vt′

α
; y = y′; z= z′; t =

t ′− v
c2x

′

α
(14)



and their inverses:

x′ =
x−vt

α
; y′ = y; z′ = z; t ′ =

t− v
c2x

α
(15)

From the first of the inverses one deduces that the velocity of S′ with respect to
S is: (

∂x
∂t

)

x′
= v.

This shows that relative velocity has the same absolute value in both systems.
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S is: (
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x′
= v.

This shows that relative velocity has the same absolute value in both systems.

The clock paradox

The station master could reason so: let the traveler’s clock be retarded, by
reason of the (1−α) per hour factor, then one may write:

2T ′ = 2αT +4t ′, (16)



where 4t ′ is an advancement to the hands of his clock to take the reversal into
account.

For his part, the traveler reasons as follows: a clock at the stations is re-
tarded with respect to mine, because when it shows 2T, mine shows:

2T ′ = 2T/α+4t ′. (17)

The paradox consists in that these two solutions, each apparently legitimate, are
incompatible, as a comparison between Eq. (16) and (17) results in an absurd
equation

α = 1/α. (18)

After these two contradictory solutions, a position that seems logical is that of
Professor Dingle (loc. cit.), which asserts that both are incorrect, and that it
must be that 2T ′ = 2T, as if clocks in Sand S′ run parallel. Let us proceed now
to examine this question.



To account for a returning train, change from the inertial system S′ into an-
other S′′ and, although with it one does not change the rate of the clocks, pro-
ceed to determine the arbitrary constants that appear in Lorentz transformations
applied to new initial conditions. To facilitate considerations, suppose that an in-
terval 4t needed to reverse course is negligible, and take v/c = 0.5.





The clock problem resulting from supposing that motion reversal is effected
with simultaneity in S’. All events between lines a and b are simultaneous in S′.
Travelers age slower than those staying in an unaccelerated system.

The traveler who is located always at x′ = 0, takes as initial conditions for a
return trip (See: Fig.) the values x = vT, t = T, and a value of t ′ given by the
Lorentz formula:

t =
1
α

(
t ′+

v
c2

x′
)

,

which, with reference to Fig. ?? , are t ′ = αT = 5.20 for x′ = 0; t = T = 6. The
initial conditions would be then:

x′′ = 0, t ′′ = αT for x = vT, t = T;

so that one has T ′′ = αT; and, the transformation formulas for the traveler’s
return, supposing that the reversal is carried out simultaneously in S′, where, in
the traveler’s terms:



x =
1
α

(x′′−vt′′+2vT′′),

t =
1
α

(
t ′′− v

c2
x′′

)
;

x′′ =
1
α

(x+vt−2
v
α

T ′′),

t ′′ =
1
α

(
t +

v
c2

x−2
v2

αc2

)
(19)

and when both clocks return to be isotopic at x−x′′ = 0, each’s reading respec-
tively would be:

• Station clock:.....................t0 = 2T = 12



• Traveler’s clock..............t ′′r = 2αT = 10.4

with the final result:

t ′′v = αt0. (20)

So far so good, but the station master rejects this result, adducing that his
clock, which just before the train changed direction, indicated a time t1 satisfying
the equation:

t ′ =
1
α

(
t1− v

c2
x
)

for x = 0, t ′ = αT,

so that, t1 = α2T = 4.5, suddenly passes by the station again at time t2, the
value of which is obtained from the last of Eq. (19) with x = 0 and t ′′ = T ′′, i.e.,

t2 =
1
α

(
1+

v2

c2

)
T ′′ = 7.5,



which means that its hands have been advanced, without justifiable cause, by
an interval

t2− t1 =
2v2

αc2
T ′′ = 2(1−α2)T = 3. (21)





The clock problem resulting from supposing that motion reversal is effected
with simultaneity in S. The hands of the clock jump from ct = 5.20 to ct = 8.65.
Travelers age quicker than those remaining in a non accelerated frame.

To recast the problem from the viewpoint of a station master who is located
at x = 0 (See: Fig. ), one has to take as the initial situation that which results
from a proper concept of simultaneity, following which, a reversal of the train is
an event which occurs when its clock shows t = T, and such that a clock in S′,
which then passes by x = 0, indicates

t ′ =
1
α

(
t− v

c2
x
)

= T/α = 6.93,

with the value of x′ given by

x′ =
1
α

(x−vt) =−vT/α.



The initial conditions would be, then,

x′′ =−vT/α, t ′′ = T/α for (x = 0, t = T),

with which transformation formulas for a return trip become:

x′′ =
1
α

(x+vt−2vT),

t ′′ =
1
α

(
t +

v
c2

x
)

;

x =
1
α

(
x′′−vt′′+2

v
α

T
)

,

t =
1
α

(
t ′′− v

c2
x′′−2

v2

αc2
T

)
(22)

At the end of a journey, when both clocks are again isotopic at x = x′′ = 0,



each respectively shows:

t0 = 2T = 12; t ′′0 = 2T/α = 13.9;

from which
t ′′0 = t0/α. (23)

But now it is the traveler who rejects this solution, as his clock, which before a
reversal indicated a time t ′, satisfied by

t =
1
α

(
t ′1+

v
c2

x′
)

for x′ = 0, t = T,

so that, t ′= αT = 5.2, passes the marker suddenly at time t ′′2 , which one obtains
from the last of Eqs. (22) in which x′′ = 0 and t = T, i.e,

t ′′2 =
1
α

(
1+

v2

c2

)
T = 8.65,



which means that its hands were advanced, without justification, by an interval

t ′′2 − t ′1 =
2v2

αc2
T = 3.45. (24)

We are, then, faced with a dilemma. If solutions given by Eqs. (20) and (23) are
valid, we get an absurd result: α = 1/α. If one rejects Eq. (20) because it does
not satisfy a traveler, one has to reject Eq. (23) because it does not satisfy a
station master.

The result of this discussion is that Lorentz transforms give two contradictory
solutions, neither of which is acceptable.

We can assert that, when one addresses this problem from the viewpoint of
a traveler, one supposes that the outward and return trip of all the points of the
train occur simultaneously in S′, whereas a station master applies simultaneity
criteria in his proper system. But, in both cases the condition that, according



to the clock of a traveler he reverse his course when t = T and t ′ = αT, is
respected.



New transformations.

Following the path taken in §1.2, the two first principles motivate the follow-
ing transformation formulas:

x = ρ
α(x′+vt′)

y = ρy′

z= ρz′

t = ρ
α(t ′+ v

c2x
′)

where α =
√

(1−v2/c2), and ρ is an indeterminate constant. In Einstein’s
theory this constant has the value ρ = 1 by virtue of the principle that both
system Sand S′ are equivalent. But, reasoning that served us well for examining
the so-called clock paradox, which is in reality a logical absurdity, shows that
duration of a “happening” that transpires at a fixed position in an arbitrary inertial
frame has to be equal to that perceived from a fixed frame; from which it follows



that to fix the value of ρ, the condition: t1− t2 = t ′1− t ′2 if x′1 = x′2, requires that
ρ = α. Thus, the transformations become:

x = x′+vt′;
y = αy′;
z= αz′;

t = t ′+ v
c2x

′,

(25)

where, again, α =
√

(1−v2/c2), and from which one deduces inverse transfor-
mations to be

x′ = 1
α2(x−vt);

y′ = y/α;
z′ = z/α;

t ′ = 1
α2(t− v

c2x).

(26)



In general, relativistic transformation relationships take the form:

x = αn−1(x′+vt′);
y = αny′;
z= αnz′;

t = αn−1(t ′+ v
c2x

′);
x′ = α−n−1(x−vt);

y′ = α−ny;
z′ = α−nz;

t ′ = α−n−1(t− v
c2x).

(27)

Setting n = 0 gives Einstein’s version, and with n = 1 we get a new version.

From these equations, Eqs. (27) one deduces that:

(∂x
∂t

)
x′ = v;

(
∂x′
∂t′

)
x
=−v,



which means that, except for the sign, the relative velocity is identical for both
systems.

Resolution of the clock paradox

The Fig. below depicts the situation for the ‘clock paradox according to the
new formulas supposing that velocity reversal is synchronized in S.



The axes of the three inertial sys-



tems have precisely the same positions as they have according to Lorentz trans-
forms, but with a change in scale.

The difference between our new version and that using Lorentz’s transforms
rests on the fact that now all is explained by the operation of setting clocks, such
that all observers have to impose an invariant clock rate in each inertial system
on all clocks.
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Conclusions:

1. Non-locality is non-existent. In particular as there are counterexamples, both
models (see offprint) and experiments.

2. Asymmetric aging is not established fact.

3. Propertime may well be universal and have an intrinsic “arrow.”

4. The “Direct Interaction paradigm does not mislead one to make meaningless
calculations; e.g., the energy density of ‘background’ radiation.



Clauser-Aspect type EPR-B experiments.



Clauser-Aspect type EPR-B experiments.

The source is assumed to emit a double signal for which individual signal
components are anticorrelated and, because of the fixed orientation of the exci-
tation source, confined to the vertical and horizontal polarization modes; i.e.

S1 = (cos(nπ
2), sin(nπ

2))
S2 = (sin(nπ

2), −cos(nπ
2))

, (28)

where n takes on the values 0 and 1 with an even, random distribution.
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components are anticorrelated and, because of the fixed orientation of the exci-
tation source, confined to the vertical and horizontal polarization modes; i.e.

S1 = (cos(nπ
2), sin(nπ

2))
S2 = (sin(nπ

2), −cos(nπ
2))

, (28)

where n takes on the values 0 and 1 with an even, random distribution.

The transition matrix for a polarizer is given by,

P(θ) =
[

cos2(θ) cos(θ)sin(θ)
sin(θ)cos(θ) sin2(θ)

]
, (29)





so the fields entering the photodetectors are given by:

E1 = P(θ1)S1

E2 = P(θ2)S2
. (30)



so the fields entering the photodetectors are given by:

E1 = P(θ1)S1

E2 = P(θ2)S2
. (30)

Coincidence detections among N photodetectors (here N = 2) are proportional
to the single time, multiple location second order cross correlation, i.e.:

P(r1, r2, ..rN) =
< ∏N

n=1E∗(rn,t)∏1
n=N E(rn,t) >

∏N
n=1 < E∗

nEn >
. (31)

It is shown in Coherence theory that the numerator of Eq. (31) reduces to the
trace of J, the system coherence or “polarization” tensor. It is easy to show that
for this model the denominator consists of constants equal to 1.
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The final result of the above is:

P(θ1,θ2) =
1
2

sin2(θ1−θ2). (32)

This is immediately recognized as the so-called ‘quantum’ result. (Of course, it
is also Malus’ Law, thereby being in total accord with our premise.)
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Consider recent four-fold GHZ experiment by PAN et al.:
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GHZ type experiments:

Consider recent four-fold GHZ experiment by PAN et al.:

fig1.eps not found!

Eq. (31) was implemented as follows: The crystal is assumed to emit a dou-
ble signal for which individual signal components are anticorrelated and con-



fined to the vertical and horizontal polarization modes; i.e.
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where n and m take the values 0 and 1 randomly.
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where n and m take the values 0 and 1 randomly.

The polarizing beam splitter (PBS) is modeled using the transition matrix for
a polarizer, P(θ), Eq. (31) where θ = π/2 accounts for a reflection and θ = 0 a
transmission. Thus the final field impinging on each of the four detectors is:

E1 = P(θ1)A1

E2 = P(θ2)(P(0)B2−P(π/2)A3)
E3 = P(θ3)(P(0)B3−P(π/2)A2)
E4 = P(θ4)B4

(34)



which, using Eq. (31), does not result in a simple expression; but numerically:
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The principle results reported by PAN et al.: Of the 16 possible regimes set-
ting: θi = {0, π/2} only {0, π/2, π/2, 0} and {π/2, 0, 0, π/2}yield a four-fold
coincidence count, C; the regime {π/4, π/4, π/4, π/4} occurs with an intensity
C/4 and the regime {π/4, π/4, π/4, −π/4}with zero intensity. Further, both of
the later regimes yield an intensity of C/8 when the time between pair creation
is so large that that there is no “cross-talk” between channels 2 and 3. Our
model mimics everything.
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Results of a classical calculation of four-fold coincidences. The upper curve,
without PBS’s, on the left is “prepurified;” the fact that the visibility of the other
curve with PBS’s is higher is said to exhibit “entanglement purification.” Irrespec-
tive of terminology, the phenomenon is nonquantum: Malus’ Law or geometry.
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Franson-type experiments

These experiments exploit time-delays between pulses to define the orthog-
onal states played by the two states of polarization in the setups described
above.See Fig. below.
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To model them, a simple tactic is to assign the signals in the long and short
paths to orthogonal dimensions of a vector space; the resulting calculations are
transparent and devoid of irrelevant, gratuitous complexity. For example:

Er = (exp(−i(kx−ωt)+φ), exp(−i(kx−ωt))/
√

2
El = (exp(−i(kx−ωt)+ϕ), exp(−i(kx−ωt))/

√
2

, (35)

where φ and ϕ are the extra phase shifts introduced in the long paths. Then,
using Eq. (31), with the convention that the tensor product in be replaced by a
vector inner product; i.e.,

P(φ, ϕ) =
(E∗

r ·E∗
l )(El ·Er)

(E∗
r ·Er)(E∗

l ·El)
, (36)

(to algebraically enforce the orthogonality in calculations that time-delay en-
forces in the experiment) quickly gives the observed correlation as a function of



the phase shifts:

P(φ, ϕ) ∝ 1+cos(φ−ϕ), (37)

which exhibits the oscillation with 100%visibility characteristic of idealized ver-
sions of these experiments.
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Brendel type experiments

In the above experiment the radiation source was taken to be ideal, that is, it
produced two signals of exactly the same frequency with no dispersion. In some
experiments, the source used was a nonlinear crystal generating two correlated
but not necessarily identical pulses, which satisfy ‘phase matching conditions’
so that if one signal in frequency is above the mean by s (spread), the other
is down in frequency by the same amount. This leads to an additional phase
difference at the detectors which is also proportional to those already there; i.e.,
sϕ and sφ, so that:

Er = (exp(−i(kx−ωt)+φ(1+s)), exp(−i(kx−ωt))
El = (exp(−i(kx−ωt)+ϕ(1−s)), exp(−i(kx−ωt)) . (38)

Since the value of s is different for each pulse (photon) pair, the resulting signal



is an average over the relevant values of s:

1
2s

Z s

−s
P(φ, ϕ, s)ds, (39)

where P(φ, ϕ, s) was computed as for ‘Franson’ experiments. The final result
closely matches that observed by BRENDEL et al. See following fig.
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Suarez-Gisin type experiments

In experiments of this type one of the detectors is set in motion relative to
the other. By doing so with appropriately chosen parameters, it is possible to ar-
range the situation such that each detector precedes the other in its own frame.
Thus, not only is the ‘collapse’ of the wave packet “nonlocal,” it occurs such that
there is also “retrocausality.” In the model proposed herein, however, this com-
plication (paradox) can not arise in the first instance. All the properties of each
pulse are determined completely at the common point at which the signals are
generated. Properties measure at one detector in no way determine those at
the other detector, regardless of the order in which an observer receives reports
of the results from the two detectors, or regardless of what conditional probabil-
ities he might write to describe the state of his hypothetical or real knowledge
as determined by the time order of his receipt of information from the detectors.
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Local-realistic simulation of “Bell” (EPR-B) experiment.
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or visa versa.
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Local-realistic simulation of “Bell” (EPR-B) experiment.
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• Source: two randomly selected pairs of classical pulses: vertical::horizontal
or visa versa.

• Measurement stations: polarizing beams splitters feeding two each
photodetectors.

• Data collection & analysis: “coincidence circuitry:” also per Malus’ Law get
relative intensity:

κ∗ = cos2(θr−θl)−sin2(θr−θl), (40)





• Expand with:

cos(θr−θl) = cos(θr)cos(θl)+sin(θr)sin(θl),

sin(θr−θl) = sin(θr)cos(θl)−cos(θr)sin(θl); (41)



• Expand with:

cos(θr−θl) = cos(θr)cos(θl)+sin(θr)sin(θl),

sin(θr−θl) = sin(θr)cos(θl)−cos(θr)sin(θl); (41)

• Get values of individual terms from Malus’ Law:

cos(θl) =
√

Nhl/N,

sin(θl) =
√

Nvl/N.
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dx f(x)δ(x− l)δ(x−m) = 0, (42)

whenever l 6= m.



Can Data to test a BI be taken?

• What goes into the extraction of a Bell Inequality?

First, recall Z
dx f(x)δ(x− l)δ(x−m) = 0, (42)

whenever l 6= m.

The derivation of a Bell Inequality starts from BELL’s fundamental Ansatz:

P(a, b) =
Z

dλρ(λ)A(a, λ)B(b, λ), (43)

where, per explicit assumption: A is not a function of b; nor B of a; and each
represents the appearance of a photoelectron in its wing, and a and b are the



corresponding polarizer filter settings. This is motivated on the grounds that a
measurement at station A, if it respects ‘locality,’ so argues Bell, can not depend
on remote conditions, such as the settings of a remote polarizer. By definition:

|A| ≤ 1, |B| ≤ 1, (44)

which in this case effectively restricts the analysis to the case of just one pho-
toelectron per time window per detector. Eq. (43) expresses the fact, that when
the hidden variables are integrated out, the usual results from QM are to be
recovered.

The λ above in Bell’s analysis are to be the hypothetical “hidden variables”,
which, if they exist, should render QM deterministic. As is customary, the single
symbol λ represents actually a set of such ‘hidden variables’ that may include
many different characters, such as discrete, continuous, tensor or whatever.
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Extraction of inequalities proceeds by considering differences of two such
correlations where (a, b), i.e., the polarizer axis of measuring stations left and
right, differ:

P(a, b)−P(a, b′) =R
dλρ(λ)[A(a, λ)B(b, λ)−A(a, λ)B(b′, λ)] = 0,

(45)

to which one adds ±0 in the form:

A(a, λ)B(b, λ)A(a′, λ)B(b′, λ)−
A(a, λ)B(b′, λ)A(a′, λ)B(b, λ) = 0,

(46)

to get:

P(a, b)−P(a, b′) =R
dλρ(λ)A(a, λ)B(b, λ)[1±A(a′, λ)B(b′, λ)]−R
dλρ(λ)A(a, λ)B(b′, λ)[1±A(a′, λ)B(b, λ)],

(47)



which, in turn, upon taking absolute values and in view of Eqs. (44), Bell wrote
as

|P(a, b)−P(a, b′)| ≤R
dλρ(λ)[1±A(a′, λ)B(b′, λ)]+R
dλρ(λ)[1±A(a′, λ)B(b, λ)].

(48)

Then, using Eq. (43), and the normalization condition
R

dλρ(λ) = 1, he got, for
example:

|P(a, b)−P(a, b′)|+ |P(a′, b′)+P(a′, b)| ≤ 2, (49)

a ‘Bell inequality.’
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Now, however, if the λ are a complete set, thereby rendering everything
deterministic so that all probabilities become Dirac or Kronecker delta distribu-
tions, then the A’s and B’s in Eq. (47) are pair-wise, that is as individual events
comprising the generation at the source of one pair, non-zero for distinct values
of λ, which, by virtue of completeness, do not coincide for distinct events, i.e.,
for different pairs. That is, for each pair of settings (a, b) and iteration of the
experiment, there exists a unique value (or set of values), λ(a,b) say, for which
A(a|λ(a,b))B(b|λ(a,b)) is non-zero (±1 in the discrete case, ±∞ in the continu-
ous case). In other words, each product A(a|λ(a,b))B(b|λ(a,b)) can be written in
the form f (x)δ(x−λ(a,b)), so that all quadruple products

A(a|λ(a,b))B(b|λ(a,b))A(a|λ(a′,b′))B(b|λ(a′,b′)), (50)

are of the form:
f (x)δ(x−λ(a,b))g(x)δ(x−λ(a′,b′)), (51)

where x is a dummy variable of integration to run over all admissible values of



λ. Therefore, such terms with pair-wise different values of λ(ab) in Eq. (47), i.e.,
when either a 6= a′ or b 6= b′, are, in accord with Eq. (42), identically zero under
integration over λ. This annihilates two terms on the left of eq. (49), so that the
final form of this Bell Inequality, resulting from the above complex of hypotheses,
is actually, for example, the trivial identity[?]:

|P(a, b)|+ |P(a′, b′)| ≤ 2. (52)
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• Is taken data compatible with a Bell inequality?

Suppose there is a string of data available from an experiment. It will be com-
prised of four virtually equal length subsets, one for each setting combination;
let the term-wise product series of the first subset be denoted a1b1, the second
a2b′2, etc. (and where another serial subscript is understood). With this notation,
Eq(49) becomes:

|< a1b1 > + < a2b
′
2 > |+ |< a′3b

′
3 >−< a′4b4 > | ≤ 2. (53)

Now, it is obvious that for a particular polarizer setting, the percentage of
+1’s in the total of long enough samples will be equal; i.e., the number for a1

equals the number for a2 etc.; so that one can imagine re-sorting a2 so that it
has nearly the identical serial pattern as a1. Denote the re-sorted version as ã2.



Thus, the re-sorted second term in Eq. (?? ), for example, becomes

a2b
′
2⇒ ã2b̃′2

∼= a1b̃′2

the resorted third term becomes:

a′3b
′
3⇒ ã′3b̃

′
3
∼= ã′3b̃

′
2

and then the fourth term:

a′4b4⇒ ã′4b̃4
∼= ã′3b̃4.

So that Eq. (53) converts to:

< |a1||(b1+ b̃′2)|> + < |ã′3||(b̃′2− b̃4)|> . (54)



Obviously, as b1
∼= b̃4 is not necessarily true identically, that is by physical re-

quirements from the experiment, the loop can not be closed and the whole
expression can not be limited identically to being ≤ |2|.
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Negatability — ???

• Consider very low intensity source “photon” source,
i.e., time interval between pair creation > > H.U. interval within a pair

• “Photon” picture:
Intensity(window width): step-wise increasing

• “Photoelectron” picture:
Intensity(window width): monotonically increasing.
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• “Teleportation” is a gross misnomer,
better: coincidence filtering

• Based on negatable paradigm.

• Details: quant-ph/01 08 057; (+more on arXiv;
search: Kracklauer — all categories/all years)

• e-file with MAPLE or SCILAB routines for the above available upon request.
kracklau@fossi.uni-weimar.de


