Daño óptico

Cinthia Huerta Alderete Julio César Juárez Ramírez

Instituto Nacional de Astrofísica, Óptica y Electrónica. Luis Enrique Erro No. 1 Santa Ma. Tonantzintla, 72840, Puebla, México

7 de mayo de 2015

Índice

- 1 Introducción
- 2 Aplicaciones
- 3 Método de medición LIDT
- 4 Conclusiones

Introducción

¿Qué es el daño óptico?

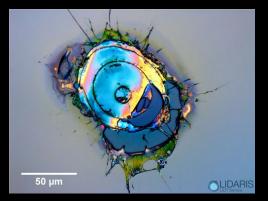


Figura 1: Daño inducido por láser en un espejo dielectrico en el vacio.

Propiedad de LIDARIS. http://www.rp-photonics.com/img/lidaris1.jpg

<□▶ <□▶ < 亨▶ < 亨▶ < 亨 ▶ 의익()

Tipos de daño. Reversibles

Reversibles

Aumentos de temperatura.

Expansión.

Distorsión.

Transmisión u absorción no lineal.

Estrés.

Efectos electro-ópticos.

SHG.

Auto enfocamiento.

Tipos de daño. Irreversibles

Irreversibles

Rupturas.

Derretimiento de superficie.

Vaporización.

Suabizado del material.

Doblamiento.

Explosiones.

Tipos de daño. Térmico.

Figura 2: Daño térmico.

http://opticalengineering.spiedigitallibrary.org/article.aspx?articleid = 1676763 #

Tipos de daño. Térmico.

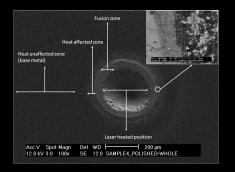


Figura 3: Daño térmico.

http://opticalengineering.spiedigitallibrary.org/article.aspx?articleid = 1676763#

Tipos de daño. Dieléctrico.

Dieléctricos (Ruptura dieléctrica.)

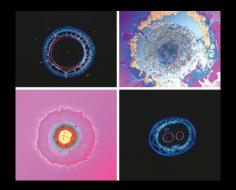


Figura 4: Fractura dieléctrica.

http://www.photonics.com/images/Web/Articles/2011/3/1/Threshold_igure1.jpg

LIDT

Laser-Induced Damage Threshold (LIDT).

Fsued silica sin recobrimiento $45 \mathrm{J/cm^2}$ (532nm, 7,5ns, diametro 1mm).

Espejo BB1-E02 $2\mathrm{J/cm^2}$ (532nm, 10ns, diametro 0,803mm).

Aplicaciones

Manipulación de superficies en películas delgadas.

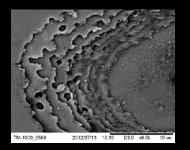


Figura 5: Daño de láser de picosegundos en una pila de multicapa.

http://i91.photobucket.com/albums/k287/lagataaranya2/loct — 4820Octopus — LaserKristal.jpg

Study of laser damage mechanisms in the sub-picosecond regim

Aplicaciones

Juguetitos

Figura 6: Figura creada con daño óptico.

http://i91.photobucket.com/albums/k287/lagataaranya2/loct-4820Octopus-LaserKristal.jpg

Arreglo

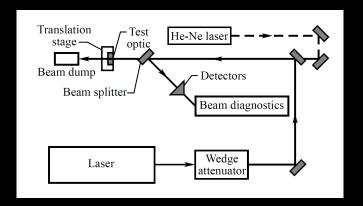


Figura 7: Arreglo para el diagnostico del limite de daño. NASA Reference

Publication 1395. Laser-Induced Damage Threshold and Certification Procedures for Optical Materials

Patrón de daño

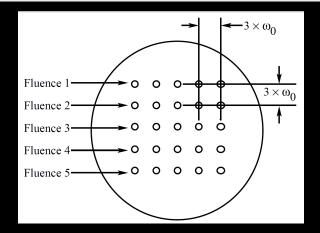


Figura 8: Patrón de daño. NASA Reference Publication 1395. Laser-Induced Damage Threshold

and Certification Procedures for Optical Materials

Conclusiones

La finalidad de ésta presentación es para mostrar e ilustrar de manera general qué es el daño óptico, cómo se mide y de que forma puede ser aplicado. La principal causa para la presencia de daño óptico en algunos sistemas son las altas intensidades del haz de luz con que se ilumine.

Conclusiones

La importancia de estudiar el daño óptico radica en encontrar el umbral de daño que puede soportar un material cuando se le incide un haz de luz muy intenso.

Gracias.

