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En cada problema muestre explícitamente sus razonamientos. 
 
Capítulo 6: Reglas de Derivación  
Obtener la sexta derivada de la función  3 2( ) ( 3 )f x x x= +  
 

( ) 3 2 3 2 6 4 2

0
(6)

6

( ) ( ) ! ; ( ) ( ) 2( )(3 ) (3 ) 6 9

6  y  1 ( ) 6! 720

n
i n

i n
i

f x a x f x n a f x x x x x x x x

n a f x
=

= ⇒ = = + + = + +

⇒ = = ⇒ = =

∑   

 
 
Capítulo 7: Razones de Cambio Relacionadas 
Dada una esfera metálica de radio r = 15 cm, ¿con qué rapidez crece su volumen V en 
cm3 por segundo, por calentamiento, si el radio aumenta en 1/100 mm por segundo?  
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Capítulo 8: Aplicaciones de la Derivada 
¿En qué intervalos es creciente y decreciente la función 31( )

12
f x x x= −  ? Empleando 

el criterio de la primera derivada determine sus valores extremos. 
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Capítulo 9: Gráfica de una Función 

Haga un bosquejo de la gráfica de la función 
31( )
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 señalando sus puntos de 

inflexión e indicando los intervalos de concavidad o convexidad de la misma. 
Mediante el criterio de la segunda derivada determine sus valores extremos. 
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Capítulo 10: Optimización 
De todos los rectángulos de perímetro constante P ¿cuál es el de área máxima? 
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