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Problemas de optimizacion
Un problema de optimizacion consiste en minimizar o maximizar el valor de una variable. En otras
palabras se trata de calcular o determinar el valor minimo o el valor maximo de una funciéon de una

variable.

Se debe tener presente que la variable que se desea minimizar o maximizar debe ser expresada como
funcion de otra de las variables relacionadas en el problema.

En ocasiones es preciso considerar las restricciones que se tengan en el problema, ya que éstas gen-
eran igualdade.s entre las variables que permiten la obtencion de la funcién de una variable que se
quiere minimizar o maximizar.
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Problemas de optimizacion
En este tipo de problemas se debe contestar las siguientes preguntas
e ;Qué se solicita en el problema?
La respuesta nos lleva a definir la funcion que debera ser minimizada o maximizada

e ;Qué restricciones aparecen en el problema?

La respuesta dara origen a (al menos) una ecuacién que sera auxiliar
para expresar la funciéon deseada como una funcién de una variable.
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Ejemplo 10.1.3 Un terreno tiene la forma de un rectdngulo con dos semicirculos en los extremos. Si el
erimetro del terreno es de , eNCe ar las dimensiones del terreno v e tenga el dre dxima.
erimetro del terreno es de 50 m, encontrar las dimensiones del terreno para que tenga el drea mdxima

El drea del terrenoes |4 = 2xy + ax*

El perimetro, P = 50 m, esta dado por

P = 2y 4 2ax, por lo que

1

50 — 2nx
2y +2nx =50 |= y=T=25—;rr.x

Si sustituimos este valor en la férmula del drea, la tendremos expresada como
funcién de una variable x

Alry=0x(25 _wx) - ny = Shx—mx’
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Su punto critico se obtiene cuando A'(x) =0

A'(x) = (50x —nx?) =50 27x =0 &

Como A"(x) = —2n < 0, se trata en efecto de un maximo;
, 25 . 3 e .
ademas|y = 25 — m— = 0] es decir, el area maxima se obtiene cuando
g

el terreno tiene la forma circular.

Este fue un tipico problema isoperimétrico, en el que se pide hallar una figura de drea maxima
teniendo el perimetro fijo, como se cuenta que se construyo la ciudad de Cartago sobre el maximo
terreno que se pudiese abarcar con una cuerda hecha a partir de una piel de vaca.

2
A =T é :@ =198.94368 m* ; 198.94 m* ~ 200 m*
T T
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2009 ~ 2010

A=2Xy + X’

, P=2y+272x,PelR,P>0

= y:g—nx =  A(X) = Px—7zx’°
, P
= AX)=P-27x=0 < x=—
27T
= A'(X)=—-27<0 paracadax
p PY P2
" 2r Y A (271) A1
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Ejemplo 10.1.4 Una ventana presenta forma de un rectangulo coronado por un semicirculo. Encuentre las
dimensiones de la ventana con drea mixima, si su perimetro es de 10 m.

Si A es el area que deseamos que sea maxima y

P es el perimetro de la ventana, entonces
|
A=xy —l—inrz P=x+4+2y+anr
x
5 Pero debido a que r = 5 y =10
4 L T /X\2 10 e (X)
= N — | — —3 J w | —
A (2) ) 2
X . ‘ 1 2 —= (1 E) 2 :
= xy + 8x ekl o > + 2)
A ¢ 2w /2 T+4 ,
) =5— = |AX) = x[5— x|+ =x?=— xX* + 5x
— ) — 5 % (x) ( 2 ) 3 3
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A(x) es la funcion de la variable x que queremos maximizar

Derivando y calculando puntos criticos

T +4 T+ 4 20
A(x)= — x+5 AlfxY=0 & el
%) 4 S 4 T+ 4
- o 20
Entonces, A(x) tiene un punto critico en x; =
o+ 4
+ 4

= i & paracadax = A"(x;) <0

=  A(x) tiene un maximo local estricto en x;

Entonces el area A de la ventana es maxima {:uandm

para la cual

i 19 Vemos que o
= — S o= 1m . e . et
) 4 x+4 e
1 T T+4
=S A=XY+=aX ==X+ =X ="—X°
8 8
2
T+4 , 7T+4 20 50 5
:>A\nax:—xmax: —= ||| = ~/m
8 8 T+4 T+4
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2+ 7T

A:xy+17zx2 - P = x(

E ( ﬂ) - A(x)_E —(ﬂ+4jx2
2 2

P

2

_|_
4 8
= A(X)= (ﬂ+4jx=0 & X= 2P
wT+4

j+2y,PeR,P>O

w+4

= A'(X)= —( j <0 para cada x

2P P p?

— Xmax: ’y: :%Xmax ’ A\nax:

T+4 T+4 2(r+4)
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Ejemplo 10.1.7 Dos poblados Py y Pp estdn a 2 km y 3 km, respectivamente, de los puntos mds cercanos A y
B sobre una linea de transmision, los cuales estin a 4 km uno del otro. Silos dos pabfﬂdug se van a conectar

con un cable a un mismo punto de la linea, ;cudl debe ser la ubicacion de dicho punto para utilizar el minimo
de cable?

P."J
8 xT Sea C el punto de conexion ubicado
Tuux o a x km del punto Ay a4 — x km del
< 4 |
i e K . punto B.
'2 km h i x :
| g | Sil es la longitud del cable utilizado
L = i’ l para conectar P, v Pp con C, entonces
A C B
—_——— — — === = —
’ 4 km ’ W= TR LTI = e L e \/(4—.3::)2@
32
x=0 = I=+4+25=7.0km
x=4 = 1=20+/9~7.5km
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La funcién a minimizares [I(x) = Vx2+4 + /(4 —x)2+9

Derivando y obteniendo puntos criticos

X 4—x

L5 = ‘ —
%) vx2+4 J(@4-x)2+9

I'xX)=0 = x/(@—x)24+9=(4—-x)Vx2+4
Elevando al cuadrado ambos miembros de la igualdad

X2[(4—x)24+9=(4—-x)*(x2+4) = 5x*+32x—64=10

32+ /(322 4(5) (64  —32+48

Esta ecuacion tiene por soluciones x =
2(5) 10

De donde se obtienen dos puntos criticos que son x; = 1.6 asi como x; = —8
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Claramente el valor x; = —8 < 0 es descartado y s6lo consideramos x; = 1.6

Yaque ["(x) =

4 9
=+ entonces ["(x) > 0 para cada x
73

(x2 +4) [(4—x)2 4+ 92

En particular /”(1.6) > O, por lo que /(x) es minima cuando x = 1.6 km

Puesto que 0 < x < 4, calculemos los ntmeros [(0), [(1.6) y [(4)

2009 ~ 2010

I0)=v02+4+/(4—02+9=7
1(1.6) = /(1.6)2+ 4+ /(4 —16)2+9 = /656 + +/14.76 ~ 6.4

I4)= V& +4+/(4—4)2+9=+v20+3~x75

Se ve que /(x) es menor cuando x = 1.6 km, siendo

i longitud minima del cable igual a6.dkm

Dr. Gonzalo Urcid S. - INAOE
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¢ Que alternativas puede haber para generalizar este problema?

1) Siendo la distancia AB una constante se puede considerar el
mismo problema con AB = d, siendo d un numero positivo,

2) Siendo las distancias P, A y P, B constantes se puede considerar el
mismo problema con P,A=a y P,B = b, siendo a, b nimeros positivos,

3) Considerando las alternativas 1) y 2) simultaneamente, en cuyo caso,
deben plantearse las hipotesis necesarias.
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¥

1) =vX2 +a® +4/(d—x)?+b? ; ab,d>0yb>a

(d —x)
J 2 Jd—x?+b?
& xy(d—x)?+b? :(d—x)x/x +a’

o X2[(d—x)2+b?] = (d — x)2(x2 +a2)

= 1'(x)= -0

a=b’-a’
< | (b® —a’)x* +2a°dx—a’d* =0 B =2a’d
y = _32d?2
2009 ~ 2010 Dr. Gonzalo Urcid S. - INAOE 14
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(M)
2

" ~ad(b-a) ad
- X:—ﬂi\/ﬁ2—4a7:—a<1(aﬂib) " -a” bsa
20 b2 —a _ad(b+a) -ad
XN="2 2
- b°—a b—a

Por hipotesis, a,b,d >0 y b>a = se descarta x, <0; ademas, x, >0

1I'(x) = X(x% +a2) 2 —(d — x)[(d — x)? + 02>

) a.2 b2
24%}3 = 0= o g g 70 X0

[ En particular, 1"(x) >0 = I(x) es minima en x =X, ]
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®
o NN

w. %
N\

U
[I(xl):\/d2+(a+b)2 }

x=0 = I(0)=a+Jd’+b®> : x=d = I(d)=b++/d?+a’

[ No es dificil demostrar que: 1(0) >1(x) y I(d)>1(x) ]

= 1(x))=minl(x) ; minimo absoluto

0<x<d
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Trabajo de pizarron:

II(X):d_Izi{(XZ_i_aZ)l/Z_'_[(d_X)Z+b2]1/2}:i(x2+a2)1/2+i[(d_X)2+b2]1/2
dx dx dx dx

_ E(XZ +a2)(1/2)—1 i(XZ +a2) +1[(d _ X)Z +b2](1/2)—1 i[(d _ X)Z +b2]
2 dx 2 dx

2X . 2d-x)**(-) X (d —X)

_ _ _ [
20X +a%  2\(d—x)?+b? x?+a? \/(d-x)?+b?

X°[(d = X)* +b*]=(d —=x)*(x* +a°)
x*(d = x)* + x*b* = x*(d — x)* +a*(d — x)°
XUA=T)7 +x%% = x2(d=X)? +a%(d? - 2dx + X°)
x°b* =a’d® —2a’dx +a’x’
b’x* —a’x’ +2a’dx—a’d* =0
(b*—a®)x*+2a’dx—a’d*=0 O

b U 4



— 2_
x— PP —Aay , a=b*-a’ ; p=2a’d ; y=-a’d’

2a
S _pE B —day —2a%d +./(2a%d)? —4(b* —a%)(—a’d?)
; 201 - 2(b? —a?)
 —2a’d +/4a’d? +4a’d?(b* —a®) —2a’d +2ad,/a’ + (b’ —a?)
- 2(b? —a?) - 2(b? —a?)
_ —2a’d +2ady 2 +b?— o _-2a’d+2adb_-a’d+adb -ad(a¥h)
2(b*—a%) 2(b*—a%) b® —a’ b® —a’
, — —ad(@-b) ad (b~d)  ad 0 ~ _O0C0
_ad(aTh) (b+a)(b—a) (b+a)M b+a (>0)+(>0)
- b? _ a2 =
a ,_ —ad@+b) —ad®+d  —ad (00
\2 (b+a)(b—a) M(b a) b-a (>0)




(d —x)

'
= «/ \/(d x)? +b?

— I(x)— {x(x +a%) V% —(d - x)[(d - x)* +b°] "'}

= x(x*+a%) Y% —(d —x)[(d = x)? +b*] 2

=&x(x +a’) —&(d—x)[(d—x) +b°T

d w2, il d
x—(x* +a X ¢ —
{ dx (¢ +a’) (x2+a2)1’2 dx }

2 2 —1/2 1
{(d—x)&[(d—x) +b] A= 107 dx( - )}

Lo ey ey a7y
2 dx

1
(x2+a2)1’2 N

_l » W2 | k2 (—1/2)—11 W2, k2 1 .
{ 2(d X)[(d —x)” +b] dx[(d X)"+b ]+[(d—x)2+b2]1’2( 1)}




= 1"(x) = {—_X(X +a) "% (2x) + 2 12 1/2}_
(X +a°)

2 | l27-3/2 21 d 1
{—E(d—x)[(d—x) +b?1¥2[2(d - x) &(d—x)]—[(d_x)2+b2]1/2}

_ ) —X? X 1 ~ —(d = x)?(=2) ) 1
— \(X2+a2)3/2 (X2+a2)1/2 [(d _X)2+b2]3/2 [(d _X)2+b2]1/2
:<”_X2+X2+a2}_{(d _X)Z_[(d _X)2+b2]}

\ (X2+a2)3/2 [(d _X)2+b2]3/2

(XZ +a2)3/2 [(d _X)Z _I_b2]3/2 _ (X2 +a2)3/2 +[(d _X)Z +bZ]3/2

:<,_x{+)/+a2}_{M—M_b2}_ 2 "



1(x) = X +a% +J(d = x)2 +D7 =\/(ﬂbj a2 +\/(d—£bj b’

a+ a+
242 N 2 242, A2 2 242
_ | ad e ad +bd — ad’ L2 | +a(a2+b) , | b b
(a+Db) a+b (a+b) (a+Db)
242 242 2 2
:i\/d2+(a+b)2 n b°d : +b2 _ a \/d2‘|‘(a+b)2 n b°d°+b (a2+b)
a+b (a+b) a+b (a+Db)
a b a b
=——Jd’+(a+b)* +—./d*+(a+b)* = + d’+(a+b)’
a+b\/ o a+b\/ G (a+b a+bj\/ @+h)

= Jd?+(a+b)? O

1(X) = X% +@% +4(d —x)? +b?
= 1(0) =J0? +a® +/(d —0)® +b? =+/a? +/d? +b? =a+/d? +b’

= I(d)=+d?+a® +,/(d—d)?+b? =vJd?+a’ +b? =b++d?+a> O




0<1(0)<I(x) = I12(0)=1(0)I(0) <I(x)I(0) <I(x)I(x) =12(x,)
12(0) < I?(x) < (a+«/d2+b2)2<(\/d2+(a+b)2)2
& a’+2avd?+b? +(d?+b?)<d?+(a+b)>=d?+a%+2ab+h?

o 2ayd?+b? <2ab < +d?+b%?<b < d?+b?<b?

< jd’<0! = 10)>1(x) O

0<I(d)<I(x) = I7(d)=1()I(d)<I(x)I(d) <1()I(x)=12(x,)
12(d) <I?(x) < (b+x/d2+a2)2<(\/d2+(a+b)2)2
& b’+2byd®+a® +(d*+a?)<d?+(a+b)>=d?+a’+2ab+b?

<« 2bd?+a?<2ab <o +d?+a’<a < d?+a’<a?
o id?<0! = I(d)>I(x) O




Ejemplo 10.1.14 Determinar las dimensiones del cilindro circular recto de maximo volumen que puede ser

inscrito en un cono circular recto de radio R y altura H.

Consideramos que el cilindro tiene radio r y altura i

h

AR o B

Una seccion transversal perpendicular
a la base del cono y que pase por su eje

e =D
El volumen del cilindroes V = wrh

H-—-h

h

IR < AR

Por semejanza se cumple la proporcion

R
H

r

H—h

R
= —(H - h
— H( )
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sustituyendo

R 2
= = [F{H_h}] h =

funcion a maximizar

Vih=0)=0
R ( )

Vih) = e

(H?h—2HhK? + h?)

Vih=H) =0

Derivamos para obtener los puntos criticos

: xR 2 ORY — 2 oo
V()= —=@h* ~4Hh + H?)  V'()=0 = 3k —4Hh+ H* =0
Tenemos que
(— 2 = 4H +2H 1
hzﬁlH:I:\;{élH) 43)H _ e w Ry tH
2(3) 6 : 3
7 R2
<R Fthi)= e 2H =0 minimo local estricto
V"(h) = (6h —4H)
H2 2nR?
V7'(hy) = — 7 < 0  maximo local estricto
1 R 1
el volumen V (/) es maximo cuandolh = h, = ;H = Jy = E(H - EH) = —R

Vmax —

2009 ~ 2010

7 R? |
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D. Aufgaben aus der Stereometrie.

Aufgabe 16. Man soll unter allen Cylindern, die sich in
einen geraden Kegel einschreiben lassen, denjenigen bestimmen,
welcher das grisste Volumen hat.

Aufiisung. Die Hohe des ge- Hg';“
gebenen Kegels (Fig. 57) ¢S sei 4, N
der Halbmesser CB der Grundfliche / | '\\
sei r, die Hohe CE des eingeschrie- O\
benen Cylinders sei y, und der Halb- ;o \A
messer CD seiner Grundfliche sei z. f—R —F
Dadurch findet man fiir das Volumen / r\f_/ O\
des Cylinders .

. __._.-.-————_+'—'-—-_._____
o ! —— e —
- fom—r - F— ——
170.) V = 2®ny. ‘ln_‘ iU —Pb—5B
‘_"‘--\... -~

Aus der Aehnlichkeit der Dreiecke SCB und FDB folgt
CS:CB=DF: DB,

2009 ~ 2010 Dr. Gonzalo Urcid S. - INAOE
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280 § 7. Maxima und Minima: Aufgaben.

oder
hir=y:r-—z,
folglich wird

h

(71.) y=f_—(r—.r) und I'.—_--?rz*{r—-xj.

,
Die Function, welche ein Maximum werden soll, ist daher
(a,bgesehen von dem positiven constanten Factor h:;)
(72.) Sflz) =22(r —z) = rz* — 25
Dies giebt
(78.) Sf(z) = 2rz — 32 = z(2r -- 3z), Sf'(z) = 2r-- b=z,
Die Ableitung f*(z) verschwindet erstens fiir z = 0 unl
2r

zweltens fiir 2z = 3 Nun ist

2009 ~ 2010 Dr. Gonzalo Urcid S. - INAOE
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S0) = 2r> 0,
folglich erhilt man fiir z = 0 ein Minimum. In der That. der
entsprechende Cylinder ist zu einer geraden Linie zusammen-
geschrumpft, und sein Volumen ist gleich Null. Dagegen wiid

RORE
folglich wird f (‘:) ein Maximnm. Die Héhe y des zugehorigen

Cylinders ist nach Gleichung (71.) gleich }:js und das Volumen
wird nach Gleichung (70.)

rihn .

Da das Volumen des gegebenen Kegels gleich 3 ist, 50

ist das Volumen des grossten Cylinders, der sich in einen geraden

Kreiskegel einschireiben lisst, gleich 4 von dem Volumen des
Kegels.

9
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6. La suma de tres nimeros positivos es 30. El primero mas el doble del segundo, mas el triple del
tercero suman 60. Elegir los nimeros de modo que el producto de los tres sea el mayor posible.

Sean x, y, z los tres niimeros, entonces claramente lo que tenemos que maximizar es el producto
xyz. Como aparecen tres variables, vamos a tratar de expresarlo en términos de una tnica variable, x
por ejemplo. Para ello tenemos un par de condiciones adicionales:

x+y+z=30; (El) dex+y+z=30= z=—x—y+30 (%)
x -2y 3z2=—60: (E2) Sustituimos z en (E2)

x+2y4+3z2=60 2> x+2y+3(-x—-y+30)=60 =|y=30—2x

Sustituyendo esta expresion en (*) queda z = —x—30+2x +30 =|z =x

la funcién a maximizares |xyz = x%(30 — 2x) = 30x? — 2x? estoes f(x) = —2x? + 30x?

se puede buscar un maximo hallando los puntos criticos de la funcién f, (f'(x) = 0)

= f'(x)=—-6x2+60x=—-6x(x—10)=0 & x=0 o x=10

= f"(x)=—12x +60 = f"(10) <0 Por lo quelen x = 10 se tiene un maximo.

Entonces z = 10 & y = 30— 20 = 10, es decir:

= |P,, =xyz=10° =1000
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13. Se desea hacer una caja abierta con una pieza cuadrada de material de 12 cm de lado, cortando cuadri-
tos iguales de cada esquina. Hallar el maximo volumen que puede lograrse con una caja asi.

13 l" -

x x El volumen, que nos piden es:

x X Vix) = (12 —2x)°x = x(dx*> — 48x -|- 144)

= 4x3 — 48x% + 144x

Sus puntos criticos son:
12—2x

V'i(x) =12x2—96x + 144 =0 & 12(x>—8x+12)=0

X =

_________ & 1266 -2)x—6)=0 & {
X s

X X

Podemos desechar x = 6, pues fisicamente no tiene sentido. Para x = 2 cmlel volumen es:

V(2) = 4(2)% — 48(2)% + 144(2) = 32 — 192 + 288 = 128 cm?

Como: V"(x) =24x—96 y|V"(2) = 48—96 < 0 se trata de un maximo.

= [V . =V(2)=2(8)* =128 cm’
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27. Un recipiente rectangular para almacenamiento, con la parte superior abierta, debe tener un volumen
de 10 m?. El largo de su base es el doble del ancho. El material para la base cuesta 3 pesos el metro
cuadrado. El material para los costados cuesta 2 pesos el metro cuadrado. Encuentre las dimensiones
para tener el mas barato de esos recipientes.

funcion que deseamos optimizar

5 1
C =6x?+ 12x (—2) = 6x° + 60—
X X

Derivando, se obtiene

1 12x3 — 60
5 C'=12x - 60— = ———
el volumen del recipiente es| V = 10 = 2x2y - e
60
Despejamos y de la restriccion dada G — G0 — 7 Vs
y = ﬂ » i La segunda derivada siempre es
T2 x? positiva para x > 0
Considerando que se trata de una caja sin tapa, C¥ = 12 IZUX—3 >0

el costo de los materiales C es

C = 6x2 + 4xy 4+ Bxy = 6x2 + 12xy

- * 3
Hay un minimo para X, = 75

5
Ymin = 7 = :/E: Xmin
(5)3

X =y ;171 ; C=18(5)"°~52.6%
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29. Halle el punto de larecta y = mx + b mas cercano al origen.

Derivando, se obtiene: D' = 2x + 2(mx + b)m

A
D'=0= 2x+2m’x +bm)=0 = x = ki
B | h B T 1 4+m?2
y=mx+b Lasegunda derivada v _ 5 4 5,2 .
siempre es positiva
o ) bm
h Hay un minimo para X, = T
= ¥ = m( i + b=
. ) Emin = Txm2 T T5m
Un punto arbitrario sobre la recta tiene las coor-
denadas (x, mx + b) observamos que Xmin = —MYmin
Distancia de un punto de la recta al origen El punto mas cercano al origen sobre la recta es
d = \/x2+ y2 = \/x2 + (mx + b)? sy = bm b
“vmins ymin) — ] +’"2’ ] +,’12
el cuadrado de la funcién anterior
tiene los mismos puntos criticos. b
2 = [d= X° + y2 = ——
D=d? =| D=x2 + (mx + b)2 min min 2
1+m
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o X :
. Los costos de la empresa Alfa estan dados por la funcién| f(x) = :‘/T_ donde x representa miles
3722

de articulos vendidos. Se pronostica que los costos seran minimos s1 se venden entre 1700 y 1800
articulos. ;Es verdadero el prondstico? Justifique su respuesta.

El dominio de la funciones R — { 1}, pues J2—1=06 x2=1 & x=+1
1 i» F

3 2% -

x2—1- 5
e 3x2—1)3 3(x2—1)—2x? x*—3
(x2—1)3 3(x2—1)3 3(x2—1)3
f'fx)=0 & x2-3=0 & x2=3 & |x|=+3 & x=~ +1.7320508

Se toma el valor positivo por tratarse de costos en una empresa. calculamos la segunda derivada:

4 1
£7(0) 6x(c— 103 42— 1)30%c(x>—3)  6x——1)—8x(x>—3)  —2%° L 1Rx
- ’\‘ — — —

g z 1
9(x2—1)3 Ox2—1)3 Ofx2—1)3
Como | f "(J3) = —6x V3 + 118 x V3 > () setrata de un minimo
9x23

este minimo se produce cuando se venden 1 732 articulos.

= | f@.7); 1.3750 ; f(@.732); 1.3747 ; f(1.8); 1.3757
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Capitulo 10
Seccion 10.1.1: 4

9,@1?, 20, 23, 261 32, 36, (12 ejercicios)

Dr. Gonzalo Urcid S. - INAOE
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Matematicos y fisicos que contribuyeron
al desarrollo del calculo diferencial e integral
durante el siglo XVII

a Vi

René Descartes Pierre Fermat Evangelista Torricelli
(1596-1650 ~ 54 afnos) (1601-1665 ~ 64 anos) (1608-1647 ~ 39 afnos)
2009 ~ 2010 Dr. Gonzalo Urcid S. - INAOE 37

Caculo Diferencial :: C10



i1 ijds . 1)
Matematicos y fisicos que contribuyeron

al desarrollo del calculo diferencial e integral
C durante el siglo XVII

5%

Blaise Pascal Christian Huygens John Wallis
(1623 -1662 ~ 39 afnos) (1629 -1695 ~ 66 afios) (1616 -1703 ~ 87 afnos)
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i1 ijds . 1)
Matematicos y fisicos que contribuyeron

al desarrollo del calculo diferencial e integral
durante los siglos XVI1I y XVIII

\_

57

James Gregory Isaac Barrow Isaac Newton
(1638 -1675 ~ 37 anos) (1630 -1677 ~ 47 afos) (1642 -1727 ~ 85 afnos)
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Matematicos y fisicos que contribuyeron
al desarrollo del calculo diferencial e integral
durante los siglos XVIl y XVI1lI

Gottfried Wilhelm Leibniz Jakob Bernoulli Johann Bernoulli
(1646 -1716 ~ 70 anos) (1654 -1705 ~ 51 afnos) (1667-1748 ~ 81 afios)
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NOVA METHODUS PRO MAXIMIS ET MINIMIS, ITEMQUE TAN-
GENTIBUS, QUAE NEC FRACTAS NEC IRRATIONALES
QUANTITATES MORATUR, ET SINGULARE PRO
ILLIS CALCULI GENUS*).

Sit (fig. 111) axis AX, et curvae plures, ut VV, WW, YY, ZZ,
quarum ordinatae ad axem normales, VX, WX, YX, ZX, quae vo-
centur respective v, w, y, x, et ipsa AX, abscissa ab axe, vocetur x.
Tangentes sint VB, WC, YD, ZE, axi occurrentes respective in
punctis B, C, D, E. Jam recta aliqua pro arbitrio assumta vocetur
dx, et recta, quae sit ad dx, ut v (vel w, vel y, vel z) est ad XB
(vel XC, vel XD, vel XE) vocetur dv (vel dw, vel dy, vel dz) sive
differentia ipsarum v (vel ipsarum w, vel y, vel z). His positis,
calculi regulae erunt tales.
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Sit a quantitas data constans, erit da aequalis 0, et dax erit
aequalis adx. Si sit v aequ. v (seu ordinata quaevis curvae YY
aequalis cuivis ordinatae respondenti curvae VV) erit dy aequ. dv.
Jam Additio et Subtractio: si sit z—y 4 w -4 x aequ. v, erit
dz—y+ w + x seu dv aequ. dz —dy 4 dw 4+ dx. Multiplicatio: dxv
aequ. xdv 4 vdx, seu posito y aequ. xv, fiet dy aequ. xdv + vdx.
In arbitrio enim est vel formulam, ut xv, vel compendio pro ea
literam, uty, adhibere. Notandum, et x et dx eodem modo in
hoc calculo tractari, ut y et dyv, vel aliam literam indeterminatam
cum sua differentiali. Notandum etiam, non dari semper regressum
a differentiali Aequatione, nisi cum quadam cautione, de quo alibi.

Porro Divisio: d—vel (posito z aequ. 1) dz aequ. :_i_:vdy:pydv.

Quoad Signa hoc probe notandum, cum in calculo pro litera
substituitur simpliciter ejus differentialis, servari quidem eadem
signa, et pro 4 z scribi + dz, pro — z scribi —dz, ut ex addi-

i : PRIMER ARTicULO DE LEIBNIZ SOBRE EL CALCULO
) Act, Erud. Lips, an, 1684, (Como lo reimprimié C. I. Gerhardt, 1858).
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Matematicos y fisicos que contribuyeron

al desarrollo del calculo diferencial e integral
durante el siglo XV11I

57

Colin Maclaurin Leonhard Euler Jean Le Rond d’Alambert
(1698 -1746 ~ 48 afios) (1707-1783 ~ 76 afios) (1717-1783 ~ 66 afios)
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Matematicos y'fl’sicos que contribuyeron
al desarrollo del calculo diferencial e integral
& durante los siglos XV y XIX

0%

Joseph Louis Lagrange Pierre Simon de Laplace
(1736 -1813 ~ 77 afnos) (1749 -1827 ~ 78 afnos)
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Matematicos y fisicos que contribuyeron

al desarrollo del calculo diferencial e integral
durante los siglos XV y XIX

\_

J

Karl Friedrich Gauss Augustin Louis Cauchy
(1777-1855 ~ 78 afios) (1789 -1857 ~ 68 afios)
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