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PROBLEMAS DEL CAPÍTULO 5: INTEGRACIÓN         
 

1)  Sea P  = {x0, x1, x2} una partición regular del intervalo [a,b]. Demostrar que si 

     f es continua y decreciente en [a,b], entonces Uf (P) – Lf (P) = [ f(a) - f(b) ] ∆x. 

 

 

 

 

 

 

 

 

 

 

 

 

 

2)  Para la función F(x) determinar )2/1(F  (valor de la derivada en x = 0.5)  
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3)  Calcular la siguiente integral definida 
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Por ser   continua admite un valor mínimo  y un valor máximo 
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PROBLEMAS DEL CAPÍTULO 5: INTEGRACIÓN 

 

4)  Bosquejar la región limitada por el eje x y las curvas f(x) = sen x  y  g(x) = cos x 

     para x ε [0, π/2] y hallar su área. 

 

 
 

5)  Hallar  f(x) partiendo de que 1)2(,32)( fxxf  y  f(0) = 3. 

 

 

 

 

 

 

 

 

6)  Calcular la siguiente integral indefinida 

     dx
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7)  Sea f una función continua, para 0c demostrar que 
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;   ya que  0,

       análogamente,  
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PROBLEMAS DEL CAPÍTULO 5: INTEGRACIÓN 

 

 

8)  Calcular la derivada de la siguiente integral con límites variables 
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9)  Calcular la siguiente integral definida 
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10)  Determinar el valor promedio de la función ]2,2[;4)( 2 xxxf  

       y hallar las abscisas donde ocurre este valor. 
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