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PROBLEMAS DEL CAPÍTULO 5: INTEGRACIÓN         
 

1)  Sea P  = {x0, x1, x2, x3} una partición regular del intervalo [a,b]. Demostrar que si 

     f es continua y creciente en [a,b], entonces Uf (P) – Lf (P) = [ f(b) - f(a) ] ∆x. 

 

    

 

 

 

 

 

 

 

 

 

 

 

2)  Para la función F(x) determinar ( 1)F  (valor de la derivada en x = -1)  

    1
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3)  Calcular la siguiente integral definida 
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Por ser   continua admite un valor mínimo  y un valor máximo 

en cada subintervalo [ , ] y por ser creciente estos valores ocurren

respectivamente en   y  , para 1,2,3 es decir, (

i i
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además, por tratarse de una partición regular, ( ) / 3
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PROBLEMAS DEL CAPÍTULO 5: INTEGRACIÓN 

 

4)  Bosquejar la región limitada por las curvas f(x) = 1  y  g(x) = 1+ cos x 

      para x ε [0, π] y hallar su área. 

 

              
 

5)  Hallar  f(x) partiendo de que ( ) 5 4 , (1) 1  y  (0) 2 .f x x f f  

 

 

 

 

 

 

 

 

6)  Calcular la siguiente integral indefinida 
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7)  Sea f una función continua, demostrar la igualdad y dar su significado   

                                      ( )
b c b

a c a
f x c dx f x dx  
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;  si ( ) ,  análogamente, 

si  ( ) ( ) ( ) ( )

i.e., la integral definida es invariante ante traslaciones de .

b c b b

a c a a

u x c du dx x a c u a c c a

x b c u b c c b f x c dx f u du f x dx

f



 

 

Sep.25-2010  1ER EXAMEN: CÁLCULO INTEGRAL            Dr. Gonzalo Urcid S. ~ 3/4 

 

PROBLEMAS DEL CAPÍTULO 5: INTEGRACIÓN 

 

 

8)  Calcular la derivada de la siguiente integral con límites variables 
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9)  Si m es el valor mínimo de f en [a,b] y M es su valor máximo, demostrar la 

     siguiente propiedad de la integral definida 

   ( ) ( ) ( )
b
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10)  Hallar el valor medio de la función lineal  f(x) = mx + k en el intervalo [a,b] 

     y hallar en qué punto toma f este valor. Haga un bosquejo que represente 

     geométricamente el resultado (suponga m, k, a, b > 0). 
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suponiendo que  es continua en [ , ]  existe  y se cumple

para toda partición  de [ , ] que ( ) ( ) ; en particular, si
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1
2

10) Extra: por el 1er teorema del valor medio,  ( )( ) ( )

( )( ) ( ) ( ) es el área del rectángulo cuyo

ancho es el valor promedio y su largo es la longitud del intervalo [ , ] y

(

b
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f x 2 2 2 2 21 1 1 1
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) ( ) ( ) ( ) ( )

que es el área limitada por la recta , el eje , y las rectas verticales

  y  , que geométricamente corresponde a un trapecio  de
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