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PROBLEMAS DEL CAPÍTULO 8: TÉCNICAS DE INTEGRACIÓN        

 

1)  Calcular las siguientes integrales (sección 8.1): 
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2)  Calcular las siguientes integrales (sección 8.2): 
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3)  Calcular las siguientes integrales (sección 8.3): 

     a)  sin sin ; ,mx nx dx m n Z   b) 
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4)  Calcular la siguiente integral (sección 8.4) y el problema indicado en b): 
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5)  Calcular las siguientes integrales (sección 8.5): 
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Problema EXTRA – válido solamente si se resuelven todos los anteriores: 

 

6)  Calcular la siguiente integral definida. Sugerencia, hacer  u = tan (x/2) , 
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a)     Problema EXTRA: ver Sección 8.6, en particular el ejemplo 4; de ahí,

1 2 tan( / 2) 1
ln

3sin 4cos 5 tan( / 2) 2

1 2 tan( / 2) 1 1 2 tan( / 4) 1 2 tan(
ln ln ln

3sin 4cos 5 tan( / 2) 2 5 tan( / 4) 2

dx x
C

x x x

dx x

x x x

21
/ 2 / 2 / 2

0) 1

tan(0) 2

1 2 1 0 1 1 1 1 1 1/ 3 1 2
ln ln ln ln ln ln

5 1 2 0 2 5 3 2 5 1/ 2 5 3

b)         por la identidad de Euler:  cos sin

1 21
1 ( )

100

i

i i i i

e i

i e e e
e

R




