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5.7 OTRAS PROPIEDADES DE LA INTEGRAL DEFINIDA

En esta seccién consideramos algunas propiedades generales importantes de la integral defi-
nida. La mayoria de las demostraciones se dejan para el lector. Supondremos, a lo largo de
esta seccién, que las funciones involucradas son continuas y que a < b.

I. La integral de una funcién no negativa es no negativa:

5.7.1) 8Lfx) 20 para todo x € [a,b], entonces [*/x) dx 20.

La integral de una funcién positiva es positiva:

;‘fi” Y e ;v': -' IS EY it 8 + BF CRIRS / ’
(5.7.2) z\;ﬁiﬂx)>0para todo x € [a,b], entonces J:f(x) dx >0.
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La siguiente propiedad es una consecuencia inmediata de la propiedad I y de la linealidad
(5.3.6).

Il. La integral conserva el orden:
6.73) | $ifix) <g() paratodox e [a,b], entonces [*fix) dx < [g(x) dx
y
(574) | siftv) <g() paratodoxe [a,b], entonces [*fx) dx < [’g() dx.
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Demostracion de (5.7.3) Dado que fix) < g(x), se deduce que g(x) — fix) = 0. Por tanto, uti-
lizando la linealidad de la integral y (5.7.1), tenemos

[o8e) dx—[[fw) dx = []1g() /0] dx20
y por tanto,
o) dx < [20x) ax.

[.a demostracion de (5.7.4) se realiza exactamente de la misma forma.
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11l. De la misma manera que el valor absoluto de una suma es menor o igual que la suma de los
valores absolutos,

ey + x5+ o +xn| < lxey| + Jeg| + <+ + x5

el valor absoluto de una integral es menor o igual que la integral del valor absoluto:

Cor b ‘;éffi‘i”.::‘ "« : 7‘.’ 3
(5.7.5) IJ' oy dd < [l de
j e BT 1 B R A ek o

Demostracion de (5.7.5) Dado que —|fix)| <flx) <|Ax)|, se deduce que

- [0 [l dx< [2 A dx < [P A0l ax

por (5.7.3). Este par de desigualdades es equivalente a (5.7.5).

IV. Si m es el valor minimo de fen [a, b] y M es el valor maximo, se verifica que

S AERAT § e wR e
3 e e

(5.7.6) mb-a)< |’ i

¢

[ /%) dx < M(b -
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Supdngase que f'y g son continuas, que a < b y que
[2fix) dx> [?g(x) dx.
Responder razonadamente a las siguientes preguntas.

1. ;Se deduce necesariamente que j: [fix) —g(x)] dx >07?

2. ;Se deduce necesariamente que f{x) > g(x) para todo x € [a, b]?

2.— No, contraejemplo: f(x) =%, g(x)=0, xe[-1/2]]

2| 113

jllz(f_g) jl/z(x O)dX—J‘UZXdX:7 e 8

-1/2

\sin embargo, p.ej., f(-0.5) =-0.5<0=g(-0.5)

/1.— Si, por linealidad: j:f—j;g >O:j:(f—g)>0 \

/
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6. ;Se deduce necesariamente que I : [fx)| dx > I: g(x) dx ?

/Si, por transitividad: A

L= Lty [t [ tim= [If]>]
o J
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Supdngase que f es continua, que a < b y que
J: fx) dx = 0.

Responder razonadamente a las siguientes preguntas.

9. ;Se deduce necesariamente que jf Ifix)| dx = 0 ?

[ f|< [|f] equiv. [|f|>[[ f|=0 A

= j:|f|20c> Lb|f|>0 0 j:|f|=O.ContraejempIo,

-~

No, ya que:

1 q ] 1 1
d_lx x=0 (imp.) pero [ |xdx=2] xdx=1>0

/
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15. ; Se deduce necesariamente que ﬁ [Ax)+1] dx = b-a?

; b b
Si, ya que: ja f+ ja dx=0+b—-a=b-a
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Recordar el teorema (5.2.5), que enuncia que %( J : §O) dt) = fx).

La siguiente propiedad es una generalizacién de este teorema. En los ejercicios 17 a 30 de la
seccion 5.2 se dieron algunos ejemplos especificos de este resultado. Su importancia se hara

evidente en el capitulo 7.

V. Si u es una funcién diferenciable de x y f es continua, entonces

(5.7.7) _ EC(J.“‘/U) dt) = fu) =

Demostracion La funcién F(u) = j:/(t) dt
es diferenciable como funcién de u y di [F(u)] = flu). (teorema52.5)
u

Luego
du

(e dr) = Lir = Lir] 2 -
2([1r0 dr) = LR = 1G] = fu %

regla de la cadena
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Ejemplo 1 Hallar

d(JX3 dt)
dx\J0 1+¢

Solucién En este momento podria resultarle dificil al lector llevar a cabo esta integracion
puesto que requiere la funcién logaritmica que no serd introducida hasta el capitulo 7. Esto

aqui no importa. Tenemos f{f) = 1/(1+¢) y u(x) = x3. Por (5.7.7) sabemos que

3 1 2
dx\JO 1 +1 1 + x3 1 +x3
sin tener que efectuar la integracién.
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. d((2x dt
E lo 2 —— .
jemplo 2 Hallar dx(Jx T tz)

Solucién La idea para calcular esta integral consiste en expresarla en funcién de integrales
cuyos limites inferiores de integracién sean constantes. Una vez hecho esto podremos aplicar
(5.7.7). En este caso elegimos 0 como limite inferior conveniente. Dada la aditividad de la

integral:
Jx dt % jzx dt _ J'zx dt
01+ Jx 142 J0 1442

J‘zx . _ J'zx . J‘x dt
* 142 J0 142 JO 42
La diferenciacion nos da que
i(J‘Zx dt)_i(J’Zx dt )_i(J‘x dt)
dx\Jx 1+¢2)  dx\J0 14¢) dx\J0 | 42

(5.7.7) _ 2 1 .
1+(2 )2 1+4x2 1+x2

Luego
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16. Sea u una funci6n diferenciable de x y sea f continua. Deducir

2010

una férmula para

%{Uﬁ A1) dt).
/d f(t)dt—— j f (t)dt d—”\

dx
= j f(t)dt e

du
()dx

d b du
\:&L fO)dt=—f (u) /
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d sen f
21. d—x(ﬁz _I:_ df)

4 _ _ )
U=x2 y f(u):smu :i(r Smtdtj:—f(u)d_u
u dx\ ¥t dx
: TR,
:_smu2X:_29nx
\ y X J
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24. Demostrar que si u y v son funciones diferenciables de x y sifes
continua, entonces se verifica que

2010

%( [ A dr) = fv) 2~ )

eV

Ja

% J f 4 j f (aditividad) \

.:f‘fuf =i jvf —i ['f (iin. deriv.

dv
f f — (regla de la cadena
dx du j ( J )
dv
= f(v)— - f(u)— (eval. integrales)
dx dx
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Calcular las derivadas siguientes usando el ejercicio 24.

d (¢ dt
25. (E(j t)

/u:x, V=X’ f(t):} A

d du 1dv 1du
- — —fv——f — =
dx(j j (V) ()dx vadx udx

\ X XXX; /
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dx

26. i( x4+ x dt ]

Jx 2+J§‘

/::JE v=x’+x, f(t)=

d
:>_

-

il

X2 X

Jx

et g e e

1

2+¢F

dv

~

du

d(x-+x)_

1

d(v/x)

:2+¢x?+x

_2+¢x?+x_

2X+1

dx 2+
1

2% (2 +4x)

Jx

dx
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28. i[j”‘ _— dr].

/-

\_

dx\ J3x
3x, v=1/x, f(t)=cos2t \
9 st ) Ccosv Y cos2u Y
dx 3 dx dx dx dx

= COS (gj dd/x) c0os 2(3x) d(3x)
X ) dXx dx

= —izcos (EJ —3c0s(6X)
X X

/
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34.Hallar H(3)si H(x) =

L [F[2e-3H®) dt.
A

/H’(x) =

S g
dx | x 93

1d

— H'(3) = %[2(3) 3H'@)]+ [T

de .BX[Zt—BH’(t)]dt 4 jx[-]

= [2x-3H'(0)]+ [T
X

[2t - 3H ’(t)]dt}

d (1/ X)

(1/ X)
dx

Kde donde, 3H'(3)=6-3H'(3) = H'(3) =1

~

d(1l/x)
dx

1 :
=3l6-3HG)]

/
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VI.Diremos ahora algunas palabras sobre el papel de la simetria en la integracién. Suponga-
mos que f'es una funcién continua definida en algin intervalo de la forma [—a, a], un inter-
valo cerrado que es simétrico alrededor del origen.

(a) Sifesimpar en [—-a,a], entonces

[? fx) ax = .

(5.7.8)
(b) Sifes paren [-a,a], entonces
[? f0) dx = 2[ifix) .
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Estas afirmaciones pueden verificarse por un simple cambio de variable (ejercicio 48).

Consideraremos aqui estas afirmaciones desde el punto de vista del 4rea y nos referiremos
a las figuras 5.7.1 y 5.7.2.

Para la funcién impar,
Jo f0) dx = 7 fx) dx+ [ofix) dx = areade Q, - dreade Q, = 0.
Para la funcién par,

J.faf(x) dx = areade Q, + areade Q, = 2(4reade Q,) = ZJ'aof(x) dx.

FIGURA5.7.1 7Y FIGURA 5.7.2
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Supongamos que se nos pide calcular
jf”(sen x—x cos x)3 dx.

Un célculo laborioso deberia mostrarnos que esta integral es cero. No necesitamos realizar

este cdlculo. El integrando es una funcién impar y por tanto podemos decir inmediatamente
que la integral es cero.

\
e

=[=sinx+xcos x|’ =[—(sin x —xcos x)[’

=(=1)’(sinx = xcos x)’ =—(sinx —xcos x)’ =—/f(x)

5 i
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35. (a) Sea f continua en [-a, 0]. Utilizar un cambio de variable
para demostrar que s
[°, fx) dx = [; fiex) dx.

(b) Sea fcontinua en [—a, a]. Demostrar que
[*, fo) dx = [§ [fix) +fi-x)] dx.

éu:—x:x=—u y dx =—du ; ademas, \

Sl X=—a=>Uu=a: sl Xx=0=u=0

= [ fodx==[ f(-udu=["f(-u)du= [ f(-x)dx

b) j f (x)dx = jo f(x)dx+::f(x)dx= joaf(—x)dx+ joaf(x)dx
\ - joa f (x)dx + 0 f (—x)dx = joa[f(x)+ f (—x)]dx /
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36. Sea f una funcién continua en [-a, a]. Utilizar el ejercicio 35
para demostrar que

(a) j‘_’a fix) dx = 0 sifes impar.

(b) fa fix) dx = ZJS fix) dx sixes par.

/) fimpar = f(-x) =~ () N\

= [ £(9dx= [ TF(x)+ f(-x)]dx= ['[f () - f()]dx =0

b) f par = f(—x) = f(x)
= " f()dx = [T 00+ F(=)Jdx = [ [f(x)+ f (x)]dx

\ =2 jo"" f (x)dx /
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2010

Utilizar el ejercicio 36 para calcular las siguientes integrales.

38 L

Rl V2
4 Cty f I

f(-t)= =—f(t)= f esimpar

(=0) 1+(-t)? C14t2 (t) P

t3
— f(t)dt = dt=0
\ J. (t) J.31+'[ /
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Utilizar el ejercicio 36 para calcular las siguientes integrales.

39. f/;:a (1 +x2—cos x) dx.

/f(—x) =1+ (—X)* —cos(—=x) =1+ x* —cosx=f(X) = f es par\
7l3 f d _2 7l3 1 2 d
:>L[/3 (x)dx = jo (1+ x“ —cos x) dx

X . T 1x . (7
=2| X+—-=SsInX =2 —+——3—sm(—J
3 . 3 33 3

2 2
=—T+— 72'3 — \E
\ 3 81 /
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Ejercicios sugeridos, Seccion 5.7

Practicos: 18, 21, 25, 26
28, 34, 38, 39

Teodricos: 6, 15, 24, 35
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