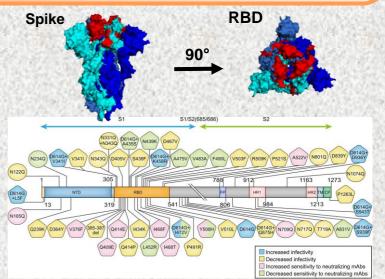
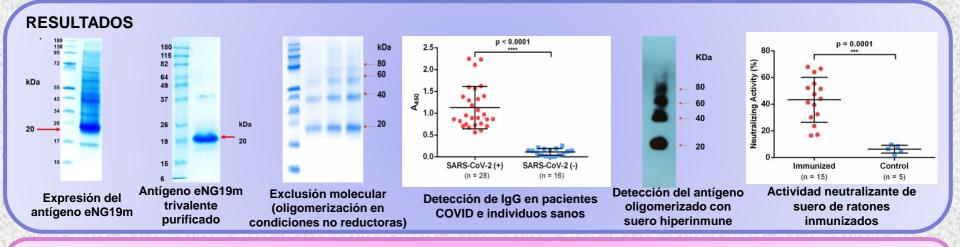


PRODUCCIÓN EN E. coli DEL ANTÍGENO RECOMBINANTE NG19m COMO CANDIDATO VACUNAL CONTRA SARS-COV-2 Wuhan Wu-1, y VARIANTES B.1.1.7 Y B.1.351


Ana Olivares-Martínez, Leandro Núñez-Muñoz, Gabriel Marcelino-Pérez, Beatriz Xoconostle-Cázares, Roberto Ruíz-Medrano, Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados. Ciudad de México, C.P. 07360.

RESUMEN

En el presente trabajo se presentan resultados de la expresión y purificación del antígeno vacunal contra el coronavirus causante del Síndrome Respiratorio Agudo Severo tipo 2 (SARS-CoV-2) a partir de una región altamente inmunogénica dentro de la estructura del Dominio de Unión al Receptor (RBD) de la proteína Spike (S). La purificación se llevó a cabo mediante FPLC por intercambio iónico y exclusión molecular. Para evaluar su inmunogenicidad, el antígeno recombinante se ensayó por vía intramuscular en conejo Nueva Zelanda, ratón BALB-c y cerdo vietnamita.


INTRODUCCIÓN

A finales de 2019, surgió el nuevo coronavirus SARS-CoV-2, causante de la enfermedad denominada COVID-19, la cual se ha convertido en pandemia mostrando una rápida transmisión y alta tasa de mortalidad (1), además de que han surgido variantes originadas por mutaciones (2). Se ha determinado que la proteína Spike (S) del virus SARS-CoV-2 tiene un Dominio de Unión al Receptor (RBD), y es reconocido por la enzima convertidora de angiotensina 2 (ACE2) como receptor humano. Sin embargo, el uso de las proteínas S y RBD completas han demostrado que inducen una respuesta adversa en individuos con sistema inmune comprometido, especulativamente por la presencia de glicaciones con patrones similares en humano (3,4).

METODOLOGÍA

Se diseñaron genes sintéticos con uso de codones optimizado para su expresión en E. coli, a partir de un dominio inmunogénico no glicosilado de RBD (5). Los antígenos están fusionados traduccionalmente con un adyuvante sintético. Estas construcciones codifican para el virus Wuhan Wu-1, y las variantes de preocupación B.1.1.7 y B.1.361. Los genes se expresan bajo un promotor inducido empleando la cepa E. coli BL21 (DE3). La expresión se llevó a cabo en medio TB con kanamicina. La proteína se purificó de los cuerpos de inclusión, que fueron solubilizados con urea 8 M y mediante cromatografía líquida por intercambio iónico y exclusión molecular a una pureza del 99%. Estos antígenos se emplearon para inmunizar conejos, ratones y cerdos por vía intramuscular empleando dos dosis. Se cuantificaron IgG mediante ensayos tipo ELISA y Western Blot con el suero hiperinmune obtenido.

CONCLUSIONES

La expresión del antígeno eNG19m y su variante trivalente fue eficiente, purificada al 99% por FPLC. El antígeno es reconocido por sueros de pacientes con COVID-19 y sueros de animales experimentales. Los anticuerpos obtenidos son neutralizantes de la interacción Spike-Receptor ACE2, confirmando la capacidad vacunal de los antígenos NG19m y su variantes.

Diseño del Fase pre-**Escalamiento** Fase II Fase III Comercialización clínica antígeno

Terminada Por concluir En proceso

AGRADECIMIENTOS

Al CONACYT por la beca de maestría otorgada a ALOM (No. 969341) y beca de doctorado a GMP (No.332010)

REFERENCIAS

- 1. Paules, C. I., Marston, H. D., & Fauci, A. S. (2020). JAMA. 323 (8): 707-708.
- 2. Greaney, A., Starr, T. et al (2021). Cell Host and Microbe. 29 (1): 44-57.e9 3. Khalaj-Hedayati, A. (2020). J. Immunol. Res. 2020 (720175): 1-11.
- 4. Wang, D., & Lu, J. (2004). Physiol Genomics, 18 (2): 245-248.
- 5. Nuñez-Muñoz, Marcelino-Pérez et al., 2021, enviado a publicación.